Chromosomal aneuploidy improves the brewing characteristics of sake yeast

Masafumi Kadowaki, Yuki Fujimaru, Seiga Taguchi, Jannatul Ferdouse, Kazutaka Sawada, Yuta Kimura, Yohei Terasawa, Gennaro Agrimi, Toyoaki Anai, Hideki Noguchi, Atsushi Toyod, Asao Fujiyama, Takeshi Akao, Hiroshi Kitagaki

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast (Saccharomyces cerevisiae) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile.

Original languageEnglish
Article numbere01620-17
JournalApplied and environmental microbiology
Volume83
Issue number24
DOIs
Publication statusPublished - Dec 1 2017
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Food Science
  • Ecology
  • Applied Microbiology and Biotechnology

Fingerprint

Dive into the research topics of 'Chromosomal aneuploidy improves the brewing characteristics of sake yeast'. Together they form a unique fingerprint.

Cite this