Abstract
On the basis of an observation due to Kiskis, Narayanan and Neuberger, we show that there is a remnant of chiral anomalies in the reduced model when a Dirac operator which obeys the Ginsparg-Wilson relation is employed for the fermion sector. We consider fermions belonging to the fundamental representation of the gauge group U (N) or SU(N). For vector-like theories, we determine a general form of the axial anomaly or the topological charge within a framework of a U(1) embedding. For chiral gauge theories with the gauge group U (N), a remnant of gauge anomaly emerges as an obstruction to a smooth fermion integration measure. The pure gauge action of gauge-field configurations which cause these non-trivial phenomena always diverges in the 't Hooft N → ∞ limit when d > 2.
Original language | English |
---|---|
Pages (from-to) | 649-668 |
Number of pages | 20 |
Journal | Journal of High Energy Physics |
Volume | 6 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 1 2002 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics