Chemically Tuned p- and n-Type WSe2 Monolayers with High Carrier Mobility for Advanced Electronics

Hyun Goo Ji, Pablo Solís-Fernández, Daisuke Yoshimura, Mina Maruyama, Takahiko Endo, Yasumitsu Miyata, Susumu Okada, Hiroki Ago

Research output: Contribution to journalArticlepeer-review

114 Citations (Scopus)


Monolayers of transition metal dichalcogenides (TMDCs) have attracted a great interest for post-silicon electronics and photonics due to their high carrier mobility, tunable bandgap, and atom-thick 2D structure. With the analogy to conventional silicon electronics, establishing a method to convert TMDC to p- and n-type semiconductors is essential for various device applications, such as complementary metal-oxide-semiconductor (CMOS) circuits and photovoltaics. Here, a successful control of the electrical polarity of monolayer WSe2 is demonstrated by chemical doping. Two different molecules, 4-nitrobenzenediazonium tetrafluoroborate and diethylenetriamine, are utilized to convert ambipolar WSe2 field-effect transistors (FETs) to p- and n-type, respectively. Moreover, the chemically doped WSe2 show increased effective carrier mobilities of 82 and 25 cm2 V−1s−1 for holes and electrons, respectively, which are much higher than those of the pristine WSe2. The doping effects are studied by photoluminescence, Raman, X-ray photoelectron spectroscopy, and density functional theory. Chemically tuned WSe2 FETs are integrated into CMOS inverters, exhibiting extremely low power consumption (≈0.17 nW). Furthermore, a p-n junction within single WSe2 grain is realized via spatially controlled chemical doping. The chemical doping method for controlling the transport properties of WSe2 will contribute to the development of TMDC-based advanced electronics.

Original languageEnglish
Article number1903613
JournalAdvanced Materials
Issue number42
Publication statusPublished - Oct 1 2019

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Chemically Tuned p- and n-Type WSe2 Monolayers with High Carrier Mobility for Advanced Electronics'. Together they form a unique fingerprint.

Cite this