Chemical composition of carbonaceous asteroid Ryugu from synchrotron spectroscopy in the mid- to far-infrared of Hayabusa2-returned samples

Emmanuel Dartois, Yoko Kebukawa, Hikaru Yabuta, Jérémie Mathurin, Cécile Engrand, Jean Duprat, Laure Bejach, Alexandre Dazzi, Ariane Deniset-Besseau, Lydie Bonal, Eric Quirico, Christophe Sandt, Ferenc Borondics, Jens Barosch, George D. Cody, Brad T. De Gregorio, Minako Hashiguchi, David A.L. Kilcoyne, Mutsumi Komatsu, Zita MartinsMegumi Matsumoto, Gilles Montagnac, Smail Mostefaoui, Larry R. Nittler, Takuji Ohigashi, Taiga Okumura, Laurent Remusat, Scott Sandford, Miho Shigenaka, Rhonda Stroud, Hiroki Suga, Yoshio Takahashi, Yasuo Takeichi, Yusuke Tamenori, Maximilien Verdier-Paoletti, Shohei Yamashita, Tomoki Nakamura, Tomoyo Morita, Mizuha Kikuiri, Kana Amano, Eiichi Kagawa, Takaaki Noguchi, Hiroshi Naraoka, Ryuji Okazaki, Kanako Sakamoto, Hisayoshi Yurimoto, Masanao Abe, Kanami Kamide, Akiko Miyazaki, Aiko Nakato, Satoru Nakazawa, Masahiro Nishimura, Tatsuaki Okada, Takanao Saiki, Shogo Tachibana, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Tomohiro Usui, Sei Ichiro Watanabe, Toru Yada, Kasumi Yogata, Makoto Yoshikawa

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Context. The current period is conducive to exploring our Solar System's origins with recent and future space sample return missions, which provide invaluable information from known Solar System asteroids and comets The Hayabusa2 mission of the Japan Aerospace Exploration Agency (JAXA) recently brought back samples from the surface of the Ryugu carbonaceous asteroid. Aims. We aim to identify the different forms of chemical composition of organic matter and minerals that constitute these Solar System primitive objects, to shed light on the Solar System's origins. Methods. In this work, we recorded infrared (IR) hyper-spectral maps of whole-rock Ryugu asteroid samples at the highest achievable spatial resolution with a synchrotron in the mid-IR (MIR). Additional global far-IR (FIR) spectra of each sample were also acquired. Results. The hyper-spectral maps reveal the variability of the functional groups at small scales and the intimate association of phyl-losilicates with the aliphatic components of the organic matter present in Ryugu. The relative proportion of column densities of the identified IR functional groups (aliphatics, hydroxyl + interlayer and/or physisorbed water, carbonyl, carbonates, and silicates) giving access to the composition of the Ryugu samples is estimated from these IR hyper-spectral maps. Phyllosilicate spectra reveal the presence of mixtures of serpentine and saponite. We do not detect anhydrous silicates in the samples analysed, at the scales probed. The carbonates are dominated by dolomite. Aliphatics organics are distributed over the whole samples at the micron scale probed with the synchrotron, and intimately mixed with the phyllosilicates. The aromatic C=C contribution could not be safely deconvolved from OH in most spectra, due to the ubiquitous presence of hydrated minerals. The peak intensity ratios of the organics methylene to methyl (CH2/CH3) of the Ryugu samples vary between about 1.5 and 2.5, and are compared to the ratios in chondrites from types 1 to 3. Overall, the mineralogical and organic characteristics of the Ryugu samples show similarities with those of CI chondrites, although with a noticeably higher CH2/CH3 in Ryugu than generally measured in C1 chondrites collected on Earth, and possibly a higher carbonate content.

Original languageEnglish
Article numberA2
JournalAstronomy and Astrophysics
Volume671
DOIs
Publication statusPublished - Mar 1 2023

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Chemical composition of carbonaceous asteroid Ryugu from synchrotron spectroscopy in the mid- to far-infrared of Hayabusa2-returned samples'. Together they form a unique fingerprint.

Cite this