TY - JOUR
T1 - Chemical and behavioral integration of army ant-associated rove beetles - a comparison between specialists and generalists
AU - von Beeren, Christoph
AU - Brückner, Adrian
AU - Maruyama, Munetoshi
AU - Burke, Griffin
AU - Wieschollek, Jana
AU - Kronauer, Daniel J.C.
N1 - Funding Information:
We thank two anonymous reviewers for valuable comments, Sebastian Schmelzle for help with graphical representation, Sebastian Kruse for help with GCMS and dry weight analyses, and Sebastian Pohl for help during field work. We thank Adrian Pinto, Carlos de la Rosa, Bernal Matarrita Carranza, Ronald Vargas and Danilo Brenes Madrigal, as well as the entire staff of La Selva Biological Station for their generous support throughout the project. CvB was supported by the German Science Foundation (BE 5177/1-1 and BE 5177/3-1), the National Geographic Society’s Committee for Research and Exploration (9393-13) and a Bristol-Myers Squibb Postdoctoral Fellowship from The Rockefeller University. DJCK was supported by a Carl & Marian Rettenmeyer Ant-Guest Endowment Award. AB was supported by the German National Academic Foundation (Studienstiftung des deutschen Volkes).
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/3/16
Y1 - 2018/3/16
N2 - Host-symbiont interactions are embedded in ecological communities and range from unspecific to highly specific relationships. Army ants and their arthropod guests represent a fascinating example of species-rich host-symbiont associations where host specificity ranges across the entire generalist - specialist continuum. In the present study, we compared the behavioral and chemical integration mechanisms of two extremes of the generalist - specialist continuum: generalist ant-predators in the genus Tetradonia (Staphylinidae: Aleocharinae: Athetini), and specialist ant-mimics in the genera Ecitomorpha and Ecitophya (Staphylinidae: Aleocharinae: Ecitocharini). Similar to a previous study of Tetradonia beetles, we combined DNA barcoding with morphological studies to define species boundaries in ant-mimicking beetles. This approach found four ant-mimicking species at our study site at La Selva Biological Station in Costa Rica. Community sampling of Eciton army ant parasites revealed that ant-mimicking beetles were perfect host specialists, each beetle species being associated with a single Eciton species. These specialists were seamlessly integrated into the host colony, while generalists avoided physical contact to host ants in behavioral assays. Analysis of the ants' nestmate recognition cues, i.e. cuticular hydrocarbons (CHCs), showed close similarity in CHC composition and CHC concentration between specialists and Eciton burchellii foreli host ants. On the contrary, the chemical profiles of generalists matched host profiles less well, indicating that high accuracy in chemical host resemblance is only accomplished by socially integrated species. Considering the interplay between behavior, morphology, and cuticular chemistry, specialists but not generalists have cracked the ants' social code with respect to various sensory modalities. Our results support the long-standing idea that the evolution of host-specialization in parasites is a trade-off between the range of potential host species and the level of specialization on any particular host.
AB - Host-symbiont interactions are embedded in ecological communities and range from unspecific to highly specific relationships. Army ants and their arthropod guests represent a fascinating example of species-rich host-symbiont associations where host specificity ranges across the entire generalist - specialist continuum. In the present study, we compared the behavioral and chemical integration mechanisms of two extremes of the generalist - specialist continuum: generalist ant-predators in the genus Tetradonia (Staphylinidae: Aleocharinae: Athetini), and specialist ant-mimics in the genera Ecitomorpha and Ecitophya (Staphylinidae: Aleocharinae: Ecitocharini). Similar to a previous study of Tetradonia beetles, we combined DNA barcoding with morphological studies to define species boundaries in ant-mimicking beetles. This approach found four ant-mimicking species at our study site at La Selva Biological Station in Costa Rica. Community sampling of Eciton army ant parasites revealed that ant-mimicking beetles were perfect host specialists, each beetle species being associated with a single Eciton species. These specialists were seamlessly integrated into the host colony, while generalists avoided physical contact to host ants in behavioral assays. Analysis of the ants' nestmate recognition cues, i.e. cuticular hydrocarbons (CHCs), showed close similarity in CHC composition and CHC concentration between specialists and Eciton burchellii foreli host ants. On the contrary, the chemical profiles of generalists matched host profiles less well, indicating that high accuracy in chemical host resemblance is only accomplished by socially integrated species. Considering the interplay between behavior, morphology, and cuticular chemistry, specialists but not generalists have cracked the ants' social code with respect to various sensory modalities. Our results support the long-standing idea that the evolution of host-specialization in parasites is a trade-off between the range of potential host species and the level of specialization on any particular host.
UR - http://www.scopus.com/inward/record.url?scp=85043767104&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85043767104&partnerID=8YFLogxK
U2 - 10.1186/s12983-018-0249-x
DO - 10.1186/s12983-018-0249-x
M3 - Article
AN - SCOPUS:85043767104
SN - 1742-9994
VL - 15
JO - Frontiers in Zoology
JF - Frontiers in Zoology
IS - 1
M1 - 8
ER -