Characteristics of flamelets in spray flames formed in a laminar counterflow

Hiroaki Watanabe, Ryoichi Kurose, Seung Min Hwang, Fumiteru Akamatsu

Research output: Contribution to journalArticlepeer-review

104 Citations (Scopus)


A two-dimensional numerical simulation of a spray flame formed in a laminar counterflow is presented, and the flamelet characteristics are studied in detail. The effects of strain rate, equivalence ratio, and droplet size are examined in terms of mixture fraction and scalar dissipation rate. n-Decane (C10H22) is used as a liquid spray fuel, and the droplet motion is calculated by the Lagrangian method without the parcel model. A one-step global reaction is employed for the combustion reaction model. The results show that there appear large differences in the trends of gaseous temperature and mass fractions of chemical species in the mixture fraction space between the spray flame and the gaseous diffusion flame. The gas temperature in the spray flame is much higher than that in the gaseous diffusion flame. This is due to the much lower scalar dissipation rate and the coexistence of premixed and diffusion-limited combustion in the spray flame. For the spray flames, gas temperature and mass fractions of chemical species are not unique functions of the mixture fraction scalar dissipation rate. This is because the production rate of the mixture fraction, namely evaporation rate of the droplets, in the upstream region is not in proportion to its transport-diffusion rate in the downstream region. The behavior shows marked differences as the strain rate decreases, the equivalence ratio increases, or the droplet size decreases.

Original languageEnglish
Pages (from-to)234-248
Number of pages15
JournalCombustion and Flame
Issue number4
Publication statusPublished - Mar 2007
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Physics and Astronomy(all)


Dive into the research topics of 'Characteristics of flamelets in spray flames formed in a laminar counterflow'. Together they form a unique fingerprint.

Cite this