TY - JOUR
T1 - Characteristics of canopy interception loss in Moso bamboo forests of Japan
AU - Shinohara, Yoshinori
AU - Komatsu, Hikaru
AU - Kuramoto, Kohei
AU - Otsuki, Kyoichi
PY - 2013/7/1
Y1 - 2013/7/1
N2 - In recent years, Moso bamboo (Phyllostachys pubescens) forests have rapidly expanded in Japan by replacing surrounding coniferous and/or broadleaved forests. To evaluate the change in water yield from forested areas because of this replacement, it is necessary to examine evapotranspiration for Moso bamboo forests. However, canopy interception loss, one of the major components of evapotranspiration in forested areas, has been observed in only two Moso bamboo forests in Japan with relatively high stem density (~7000 stems/ha). There are, in fact, many Moso bamboo forests with much lower stem density. Thus, we made precipitation (Pr), throughfall (Tf) and stemflow (Sf) observations for 1 year in a Moso bamboo forest with stem density of 3611 stems/ha and quantified canopy interception loss (Ic). Pr and Ic for the experimental period were 1636 and 166 mm, respectively, and Ic/Pr was 10%. The value was approximately the same as values for the other two Moso bamboo forests and lower than values for coniferous and broadleaved forests. On the other hand, Tf/Pr and Sf/Pr for our forest (86% and 4%, respectively) were approximately 10% of Pr larger and smaller than values for the other two Moso bamboo forests. These results suggest that the difference in stem density greatly affects precipitation partitioning (i.e. Tf/Pr and Sf/Pr) but does not greatly change Ic/Pr.
AB - In recent years, Moso bamboo (Phyllostachys pubescens) forests have rapidly expanded in Japan by replacing surrounding coniferous and/or broadleaved forests. To evaluate the change in water yield from forested areas because of this replacement, it is necessary to examine evapotranspiration for Moso bamboo forests. However, canopy interception loss, one of the major components of evapotranspiration in forested areas, has been observed in only two Moso bamboo forests in Japan with relatively high stem density (~7000 stems/ha). There are, in fact, many Moso bamboo forests with much lower stem density. Thus, we made precipitation (Pr), throughfall (Tf) and stemflow (Sf) observations for 1 year in a Moso bamboo forest with stem density of 3611 stems/ha and quantified canopy interception loss (Ic). Pr and Ic for the experimental period were 1636 and 166 mm, respectively, and Ic/Pr was 10%. The value was approximately the same as values for the other two Moso bamboo forests and lower than values for coniferous and broadleaved forests. On the other hand, Tf/Pr and Sf/Pr for our forest (86% and 4%, respectively) were approximately 10% of Pr larger and smaller than values for the other two Moso bamboo forests. These results suggest that the difference in stem density greatly affects precipitation partitioning (i.e. Tf/Pr and Sf/Pr) but does not greatly change Ic/Pr.
UR - http://www.scopus.com/inward/record.url?scp=84879889913&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84879889913&partnerID=8YFLogxK
U2 - 10.1002/hyp.9359
DO - 10.1002/hyp.9359
M3 - Article
AN - SCOPUS:84879889913
SN - 0885-6087
VL - 27
SP - 2041
EP - 2047
JO - Hydrological Processes
JF - Hydrological Processes
IS - 14
ER -