Changes in pore geometry and relative permeability caused by carbonate precipitation in porous media

Fei Jiang, Takeshi Tsuji

    Research output: Contribution to journalArticlepeer-review

    52 Citations (Scopus)


    The CO2 behavior within the reservoirs of carbon capture and storage projects is usually predicted from large-scale simulations of the reservoir. A key parameter in reservoir simulation is relative permeability. However, mineral precipitation alters the pore structure over time, and leads correspondingly to permeability changing with time. In this study, we numerically investigate the influence of carbonate precipitation on relative permeability during CO2 storage. The pore spaces in rock samples were extracted by high-resolution microcomputed tomography (CT) scanned images. The fluid velocity field within the three-dimensional pore spaces was calculated by the lattice Boltzmann method, while reactive transport with calcite deposition was modeled by an advection-reaction formulation solved by the finite volume method. To increase the computational efficiency and reduce the processing time, we adopted a graphics processing unit parallel computing technique. The relative permeability of the sample rock was then calculated by a highly optimized two-phase lattice Boltzmann model. We also proposed two pore clogging models. In the first model, the clogging processes are modeled by transforming fluid nodes to solid nodes based on their precipitated mass level. In the second model, the porosity is artificially reduced by adjusting the gray scale threshold of the CT images. The developed method accurately simulates the mineralization process observed in laboratory experiment. Precipitation-induced evolution of pore structure significantly influenced the absolute permeability. The relative permeability, however, was much more influenced by pore reduction in the nonwetting phase than in the wetting phase. The output of the structural changes in pore geometry by this model could be input to CO2 reservoir simulators to investigate the outcome of sequestered CO2.

    Original languageEnglish
    Article number053306
    JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
    Issue number5
    Publication statusPublished - Nov 12 2014

    All Science Journal Classification (ASJC) codes

    • Statistical and Nonlinear Physics
    • Statistics and Probability
    • Condensed Matter Physics


    Dive into the research topics of 'Changes in pore geometry and relative permeability caused by carbonate precipitation in porous media'. Together they form a unique fingerprint.

    Cite this