CDCA7 and HELLS suppress DNA:RNA hybrid-associated DNA damage at pericentromeric repeats

Motoko Unoki, Jafar Sharif, Yuichiro Saito, Guillaume Velasco, Claire Francastel, Haruhiko Koseki, Hiroyuki Sasaki

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome is a rare autosomal recessive disorder that is caused by mutations in either DNMT3B, ZBTB24, CDCA7, HELLS, or yet unidentified gene(s). Previously, we reported that the CDCA7/HELLS chromatin remodeling complex facilitates non-homologous end-joining. Here, we show that the same complex is required for the accumulation of proteins on nascent DNA, including the DNMT1/UHRF1 maintenance DNA methylation complex as well as proteins involved in the resolution or prevention of R-loops composed of DNA:RNA hybrids and ssDNA. Consistent with the hypomethylation state of pericentromeric repeats, the transcription and formation of aberrant DNA:RNA hybrids at the repeats were increased in ICF mutant cells. Furthermore, the ectopic expression of RNASEH1 reduced the accumulation of DNA damage at a broad range of genomic regions including pericentromeric repeats in these cells. Hence, we propose that hypomethylation due to inefficient DNMT1/UHRF1 recruitment at pericentromeric repeats by defects in the CDCA7/HELLS complex could induce pericentromeric instability, which may explain a part of the molecular pathogenesis of ICF syndrome.

Original languageEnglish
Article number17865
JournalScientific reports
Volume10
Issue number1
DOIs
Publication statusPublished - Dec 1 2020

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'CDCA7 and HELLS suppress DNA:RNA hybrid-associated DNA damage at pericentromeric repeats'. Together they form a unique fingerprint.

Cite this