TY - JOUR
T1 - Catalyst design of iron complexes
AU - Nagashima, Hideo
N1 - Publisher Copyright:
© 2017 The Chemical Society of Japan.
PY - 2017
Y1 - 2017
N2 - Despite worldwide interest from synthetic chemists, the rational design of catalytically active organoiron species remains problematic. While noble metal catalysis proceeds through diamagnetic low-spin intermediates, iron species are often in the high or intermediate spin states, which are paramagnetic and difficult to analyze. Possible spin change during catalysis also complicates the problem. This report describes two extremes for the catalyst design of iron complexes. One involves diamagnetic 14-electron iron(II) species useful for two-electron chemistry often seen in noble metal catalysis. The disilaferracyclic carbonyl complex 4 is a good catalyst precursor, and shows good catalytic performance for the hydrogenation and hydrosilylation of alkenes, and the hydrosilane reduction of carbonyl compounds. Based on DFT calculations, mechanisms involving ·-CAM (sigma-complex-assisted metathesis) for the hydrogenation and hydrosilane reduction are suggested. Further catalyst design inspired by the success of 4 led to the discovery of iron and cobalt catalyst systems composed of metal carboxylates and isocyanide ligands leading to a practical substitute for industrially useful platinum catalysts for hydrosilylation with hydrosiloxanes. The second approach involves paramagnetic 16-electron iron (II) catalyst species. A series of "(R3TACN)FeX2" complexes were prepared and found to be good catalysts for atom transfer radical polymerization, giving rise to well-controlled polymerization of styrene, methacrylates, and acrylates with high activity. Moreover, the catalyst could be easily removed from the polymer and was reusable. Mechanistic studies of iron-catalyzed crosscoupling reactions in collaboration with Nakamura and Takaya opened a new approach to the catalyst design of unknown spin states by using new analytical methods for paramagnetic species in the solution state.
AB - Despite worldwide interest from synthetic chemists, the rational design of catalytically active organoiron species remains problematic. While noble metal catalysis proceeds through diamagnetic low-spin intermediates, iron species are often in the high or intermediate spin states, which are paramagnetic and difficult to analyze. Possible spin change during catalysis also complicates the problem. This report describes two extremes for the catalyst design of iron complexes. One involves diamagnetic 14-electron iron(II) species useful for two-electron chemistry often seen in noble metal catalysis. The disilaferracyclic carbonyl complex 4 is a good catalyst precursor, and shows good catalytic performance for the hydrogenation and hydrosilylation of alkenes, and the hydrosilane reduction of carbonyl compounds. Based on DFT calculations, mechanisms involving ·-CAM (sigma-complex-assisted metathesis) for the hydrogenation and hydrosilane reduction are suggested. Further catalyst design inspired by the success of 4 led to the discovery of iron and cobalt catalyst systems composed of metal carboxylates and isocyanide ligands leading to a practical substitute for industrially useful platinum catalysts for hydrosilylation with hydrosiloxanes. The second approach involves paramagnetic 16-electron iron (II) catalyst species. A series of "(R3TACN)FeX2" complexes were prepared and found to be good catalysts for atom transfer radical polymerization, giving rise to well-controlled polymerization of styrene, methacrylates, and acrylates with high activity. Moreover, the catalyst could be easily removed from the polymer and was reusable. Mechanistic studies of iron-catalyzed crosscoupling reactions in collaboration with Nakamura and Takaya opened a new approach to the catalyst design of unknown spin states by using new analytical methods for paramagnetic species in the solution state.
UR - http://www.scopus.com/inward/record.url?scp=85023745924&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85023745924&partnerID=8YFLogxK
U2 - 10.1246/bcsj.20170071
DO - 10.1246/bcsj.20170071
M3 - Article
AN - SCOPUS:85023745924
SN - 0009-2673
VL - 90
SP - 761
EP - 775
JO - Bulletin of the Chemical Society of Japan
JF - Bulletin of the Chemical Society of Japan
IS - 7
ER -