Carbonate Apatite Micro-Honeycombed Blocks Generate Bone Marrow-Like Tissues as well as Bone

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

Hematopoietic stem cells form blood cells in bone marrow and reside in niches. Artificial environments that conserve these niches may generate bone marrow. Osteogenesis, angiogenesis, and material resorption must be regulated to create these environments. These processes are controlled by material composition and macro- and microporous structures. Here, three blocks with different micropore structures are fabricated. Carbonate apatite has nearly the same composition as natural human bone and their honeycomb structure facilitates cell penetration and survival. In samples with high microporosity, endosteum-like tissues such as sinusoids form in areas of material resorption and high local calcium concentration. These conditions resemble environments conducive to niche maintenance. Bone marrow–like tissues and megakaryocytes are successfully generated in this environment. Micropore structure is the most critical factor in bone marrow formation; however, the influences of material composition and macropore structure must also be considered. The results of this study may help develop treatments for bone marrow–related diseases and elucidate the components and functions of the hematopoietic stem cell niche.

Original languageEnglish
Article number1900140
JournalAdvanced Biosystems
Volume3
Issue number12
DOIs
Publication statusPublished - Dec 1 2019

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Biomedical Engineering
  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint

Dive into the research topics of 'Carbonate Apatite Micro-Honeycombed Blocks Generate Bone Marrow-Like Tissues as well as Bone'. Together they form a unique fingerprint.

Cite this