Blue light irradiation increases the relative abundance of the diatom Nitzschia palea in co-culture with cyanobacterium Microcystis aeruginosa

Shunsuke Watanabe, Naoki Matsunami, Ikki Okuma, Podiapen Tannen Naythen, Megumu Fujibayashi, Yasushi Iseri, Aimin Hao, Takahiro Kuba

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Lake eutrophication is associated with cyanobacterial blooms. The pennate diatom Nitzschia palea (N. palea) inhibits the growth of the cyanobacterium Microcystis aeruginosa (M. aeruginosa); therefore, increasing the relative abundance of N. palea may contribute to the inhibition of Microcystis blooms. Several studies have demonstrated that blue light irradiation promotes diatom growth and inhibits cyanobacterial growth. In this study, we evaluated the effects of blue light irradiation on N. palea and M. aeruginosa abundance. Monocultures and co-cultures of N. palea and M. aeruginosa were exposed to blue light and fluorescent light at 32 μmol photons m−2 s−1. The relative abundance of N. palea under fluorescent light decreased gradually, whereas the abundance under blue light was relatively higher (approximately 74% and 98% under fluorescent light and blue light, respectively, at the end of the experiment). The inhibition efficiency of blue light on the growth rate of M. aeruginosa was related to the light intensity. The optimal light intensity was considered 20 μmol photons m−2 s−1 based on the inhibition efficiency of 100%. Blue light irradiation can be used to increase the abundance of N. palea to control Microcystis blooms. Practitioner Points: The effects of blue light irradiation on N. palea abundance was discussed. Monocultures and co-cultures of N. palea and M. aeruginosa were exposed to blue light and to fluorescent light. The relative abundance of N. palea increased upon irradiation with blue light in co-culture with M. aeruginosa.

Original languageEnglish
Article numbere10707
JournalWater Environment Research
Volume94
Issue number4
DOIs
Publication statusPublished - Apr 2022

All Science Journal Classification (ASJC) codes

  • Environmental Chemistry
  • Ecological Modelling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Fingerprint

Dive into the research topics of 'Blue light irradiation increases the relative abundance of the diatom Nitzschia palea in co-culture with cyanobacterium Microcystis aeruginosa'. Together they form a unique fingerprint.

Cite this