TY - JOUR
T1 - Benzo[a]pyrene promotes proliferation of human lung cancer cells by accelerating the epidermal growth factor receptor signaling pathway
AU - Kometani, Takuro
AU - Yoshino, Ichiro
AU - Miura, Naoko
AU - Okazaki, Hiroshi
AU - Oba, Taro
AU - Takenaka, Tomoyoshi
AU - Shoji, Fumihiro
AU - Yano, Tokujiro
AU - Maehara, Yoshihiko
PY - 2009/6/8
Y1 - 2009/6/8
N2 - Smoking is an independent prognostic factor of lung adenocarcinoma. Benzo[a]pyrene (B[a]P) is one of the strongest carcinogens and it is present in both the environment and cigarette smoke. In this study, the effect of B[a]P on the proliferative activity of lung adenocarcinoma cells was investigated. A lung adenocarcinoma cell line, A549, was cultured with B[a]P for various periods, and its proliferative activity was examined by an MTS assay. To investigate the intracellular events related to the proliferative activity, the gene expression profile was investigated by a microarray analysis and a quantitative RT-PCR, and the protein expression and activation status of Akt, ERK 1/2 and the epidermal growth factor receptor (EGFR) were examined by a western blot analysis. Following the culture with B[a]P for 24 weeks, the serum-independent proliferative activity was increased. A microarray analysis revealed that a reversible upregulation of the EGFR and epiregulin genes was recognized in the B[a]P treated cells, in which the overexpression of the phosphorylated EGFR protein was also recognized. The EGFR tyrosine kinase inhibitor reduced the cellular proliferation and the level of phosphorylation of ERK1/2, which is a downstream signal of the EGFR, in the B[a]P-treated A549 cells. Moreover, the B[a]P treatment increased the mRNA expressions of the ligands for EGFR such as amphiregulin and epiregulin. B[a]P increases the proliferative potential of lung adenocarcinoma cells through the EGFR signaling pathway.
AB - Smoking is an independent prognostic factor of lung adenocarcinoma. Benzo[a]pyrene (B[a]P) is one of the strongest carcinogens and it is present in both the environment and cigarette smoke. In this study, the effect of B[a]P on the proliferative activity of lung adenocarcinoma cells was investigated. A lung adenocarcinoma cell line, A549, was cultured with B[a]P for various periods, and its proliferative activity was examined by an MTS assay. To investigate the intracellular events related to the proliferative activity, the gene expression profile was investigated by a microarray analysis and a quantitative RT-PCR, and the protein expression and activation status of Akt, ERK 1/2 and the epidermal growth factor receptor (EGFR) were examined by a western blot analysis. Following the culture with B[a]P for 24 weeks, the serum-independent proliferative activity was increased. A microarray analysis revealed that a reversible upregulation of the EGFR and epiregulin genes was recognized in the B[a]P treated cells, in which the overexpression of the phosphorylated EGFR protein was also recognized. The EGFR tyrosine kinase inhibitor reduced the cellular proliferation and the level of phosphorylation of ERK1/2, which is a downstream signal of the EGFR, in the B[a]P-treated A549 cells. Moreover, the B[a]P treatment increased the mRNA expressions of the ligands for EGFR such as amphiregulin and epiregulin. B[a]P increases the proliferative potential of lung adenocarcinoma cells through the EGFR signaling pathway.
UR - http://www.scopus.com/inward/record.url?scp=63449111500&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=63449111500&partnerID=8YFLogxK
U2 - 10.1016/j.canlet.2008.12.017
DO - 10.1016/j.canlet.2008.12.017
M3 - Article
C2 - 19181443
AN - SCOPUS:63449111500
SN - 0304-3835
VL - 278
SP - 27
EP - 33
JO - Cancer Letters
JF - Cancer Letters
IS - 1
ER -