Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC

K. Kawagoe, Y. Miura, I. Sekiya, T. Suehara, T. Yoshioka, S. Bilokin, J. Bonis, P. Cornebise, A. Gallas, A. Irles, R. Pöschl, F. Richard, A. Thiebault, D. Zerwas, M. Anduze, V. Balagura, V. Boudry, J. C. Brient, E. Edy, G. FayolleM. Frotin, F. Gastaldi, R. Guillaumat, A. Lobanov, M. Louzir, F. Magniette, J. Nanni, M. Rubio-Roy, K. Shpak, H. Videau, D. Yu, S. Callier, F. Dulucq, Ch de la Taille, N. Seguin-Moreau, J. E. Augustin, R. Cornat, J. David, P. Ghislain, D. Lacour, L. Lavergne, J. M. Parraud, J. S. Chai, D. Jeans

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


The technological prototype of the CALICE highly granular silicon–tungsten electromagnetic calorimeter (SiW-ECAL) was tested in a beam at DESY in 2017. The setup comprised seven layers of silicon sensors. Each layer comprised four sensors, with each sensor containing an array of 256 5.5×5.5 mm2 silicon PIN diodes. The four sensors covered a total area of 18 × 18 cm and comprised a total of 1024 channels. The readout was split into a trigger line and a charge signal line. Key performance results for signal over noise for the two output lines are presented, together with a study of the uniformity of the detector response. Measurements of the response to electrons for the tungsten loaded version of the detector are also presented.

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Instrumentation


Dive into the research topics of 'Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC'. Together they form a unique fingerprint.

Cite this