Balancing local resources and global goals in multiply-constrained DCOP

Emma Bowring, Milind Tambe, Makoto Yokoo

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


Distributed constraint optimization (DCOP) is a useful framework for cooperative multiagent coordination. DCOP focuses on optimizing a single team objective. However, in many domains, agents must satisfy constraints on resources consumed locally while optimizing the team goal. Yet, these resource constraints may need to be kept private. Designing DCOP algorithms for these domains requires managing complex tradeoffs in completeness, scalability, privacy and efficiency. This article defines the multiplyconstrained DCOP (MC-DCOP) framework and provides complete (globally optimal) and incomplete (locally optimal) algorithms for solving MCDCOP problems. Complete algorithms find the best allocation of scarce resources while optimizing the team objective, while incomplete algorithms are more scalable. The algorithms use four main techniques: (i) transforming constraints to maintain privacy; (ii) dynamically setting upper bounds on resource consumption; (iii) identifying the extent to which the local graph structure allows agents to compute exact bounds; and (iv) using a virtual assignment to flag problems rendered unsatisfiable by resource constraints. Proofs of correctness are presented for all algorithms. Experimental results illustrate the strengths and weaknesses of both the complete and incomplete algorithms.

Original languageEnglish
Pages (from-to)353-393
Number of pages41
JournalMultiagent and Grid Systems
Issue number4
Publication statusPublished - 2010

All Science Journal Classification (ASJC) codes

  • General Computer Science


Dive into the research topics of 'Balancing local resources and global goals in multiply-constrained DCOP'. Together they form a unique fingerprint.

Cite this