Atomic Layer Deposition for Thin Film Solid-State Battery and Capacitor

Dohyun Go, Jeong Woo Shin, Seunghyeon Lee, Jaehyeong Lee, Byung Chan Yang, Yoonjin Won, Munekazu Motoyama, Jihwan An

Research output: Contribution to journalReview articlepeer-review

7 Citations (Scopus)

Abstract

The demand for electrical power management has increased in recent years, owing partly to increasing contribution of intermittent renewable energy resources to the overall electricity generation. Electrical energy storage systems, such as batteries and capacitors, are core technologies for effective power management. Recent significant technological developments for these energy storage devices include the use of thin film components, which result in increased capacity and reliability. Specifically, thin films with high integrity and uniformity are required in the electrolytes of solid-state Li batteries (SSLBs) and the dielectrics of electrostatic capacitors (ECs), even at extremely thin length scale (< 100 nm) and on complex nanostructures. In this regard, atomic layer deposition (ALD), which can deposit uniform and dense thin films over 3-dimensional (3D) structures, has demonstrated its efficiency in increasing device performance, particularly when applied to the electrolytes and dielectrics of SSLBs and ECs. As a result, the applications of ALD techniques to SSLB electrolytes and EC dielectrics will be examined in this study, with a particular emphasis on research instances that used high aspect ratio structures with conformal ALD coating. Finally, we will discuss how recent advances in innovative ALD processes and equipment with better controllability, versatility, throughput, and economy may further contribute to the development of SSLBs and ECs, especially at scaled-up level.

Original languageEnglish
Pages (from-to)851-873
Number of pages23
JournalInternational Journal of Precision Engineering and Manufacturing - Green Technology
Volume10
Issue number3
DOIs
Publication statusPublished - May 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Management of Technology and Innovation

Fingerprint

Dive into the research topics of 'Atomic Layer Deposition for Thin Film Solid-State Battery and Capacitor'. Together they form a unique fingerprint.

Cite this