TY - JOUR
T1 - Asymmetric line shape of near-field luminescence spectrum induced by stress in Al2O3
AU - Tomimatsu, Toru
AU - Takigawa, Ryo
N1 - Funding Information:
This work was supported by the JSPS (KAKENHI 18K04874).
Publisher Copyright:
© MYU K.K.
PY - 2018
Y1 - 2018
N2 - The luminescence spectroscopy of Al2O3 is widely used for sensing the stress in Al2O3based materials. One promising approach that improves the spatial resolution of luminescence spectroscopy is the use of a near-field optical system, which is effective for assessing the localized stress in nano/microsize structural components. Here, we perform the spectral analysis of near-field excited luminescence for stressed Al2O3, which shows an abnormal asymmetry in line shape, which is not observed in a conventional far-field measurement. For analysis, we employ two models that include different effects. The model of stress-gradient-based spectrum broadening fails to account for the asymmetry of the luminescence spectrum. In contrast, the model including vibronic state transition yields good matching of the measured spectrum line shape, indicating that the electron-phonon coupling in Al2O3 affects the appearance of the asymmetric line shape. The magnitude of electron-phonon interaction as well as the effect of the excitation method on the line shape are discussed.
AB - The luminescence spectroscopy of Al2O3 is widely used for sensing the stress in Al2O3based materials. One promising approach that improves the spatial resolution of luminescence spectroscopy is the use of a near-field optical system, which is effective for assessing the localized stress in nano/microsize structural components. Here, we perform the spectral analysis of near-field excited luminescence for stressed Al2O3, which shows an abnormal asymmetry in line shape, which is not observed in a conventional far-field measurement. For analysis, we employ two models that include different effects. The model of stress-gradient-based spectrum broadening fails to account for the asymmetry of the luminescence spectrum. In contrast, the model including vibronic state transition yields good matching of the measured spectrum line shape, indicating that the electron-phonon coupling in Al2O3 affects the appearance of the asymmetric line shape. The magnitude of electron-phonon interaction as well as the effect of the excitation method on the line shape are discussed.
UR - http://www.scopus.com/inward/record.url?scp=85059252985&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059252985&partnerID=8YFLogxK
U2 - 10.18494/SAM.2018.2019
DO - 10.18494/SAM.2018.2019
M3 - Article
AN - SCOPUS:85059252985
SN - 0914-4935
VL - 30
SP - 2881
EP - 2888
JO - Sensors and Materials
JF - Sensors and Materials
IS - 12
ER -