Association of cathepsin E deficiency with the increased territorial aggressive response of mice

Naoki Shigematsu, Takaichi Fukuda, Tsuneyuki Yamamoto, Tsuyoshi Nishioku, Taku Yamaguchi, Masaru Himeno, Keiichi I. Nakayama, Takayuki Tsukuba, Tomoko Kadowaki, Kuniaki Okamoto, Shun Higuchi, Kenji Yamamoto

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


Cathepsin E is an endolysosomal aspartic proteinase predominantly expressed in cells of the immune system, but physiological functions of this protein in the brain remains unclear. In this study, we investigate the behavioral effect of disrupting the gene encoding cathepsin E in mice. We found that the cathepsin E-deficient (CatE-/-) mice were behaviorally normal when housed communally, but they became more aggressive compared with the wild-type littermates when housed individually in a single cage. The increased aggressive response of CatE-/- mice was reduced to the level comparable to that seen for CatE+/+ mice by pretreatment with an NK-1-specific antagonist. Consistent with this, the neurotransmitter substance P (SP) level in affective brain areas including amygdala, hypothalamus, and periaqueductal gray was significantly increased in CatE-/- mice compared with CatE+/+ mice, indicating that the increased aggressive behavior of CatE-/- mice by isolation housing followed by territorial challenge is mainly because of the enhanced SP/NK-1 receptor signaling system. Double immunofluorescence microscopy also revealed the co-localization of SP with synaptophysin but not with microtubule-associated protein-2. Our data thus indicate that cathepsin E is associated with the SP/NK-1 receptor signaling system and thereby regulates the aggressive response of the animals to stressors such as territorial challenge.

Original languageEnglish
Pages (from-to)1394-1404
Number of pages11
JournalJournal of Neurochemistry
Issue number4
Publication statusPublished - May 2008

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Association of cathepsin E deficiency with the increased territorial aggressive response of mice'. Together they form a unique fingerprint.

Cite this