TY - GEN
T1 - Application of wide-field integration of optic flow to proximity operations and landing for space exploration missions
AU - Shoemaker, Michael A.
AU - Hokamoto, Shinji
PY - 2012
Y1 - 2012
N2 - New advances in vision-based navigation for micro air vehicles (MAVs) have been inspired by the biological systems of flying insects and the use of optic flow. These biologically-inspired optical sensor systems for MAVs are computationally efficient and have low mass and low power consumption, which makes them attractive for small spacecraft. This study explores the applicability of the wide-field integration (WFI) of optic flow to a spacecraft operating in close proximity to an asteroid. In contrast with past WFI work, this study uses an asteroid-relative reference trajectory and known a priori environment model such that the optimal sensitivity functions are recalculated onboard the vehicle at each time step. Numerical simulations with computer-generated images of the asteroid surface are used to estimate the vehicle's translational and angular velocities. Although the accuracy of these state estimates are reasonable considering the noise in the optic flow measurements, the onboard recalculation of the sensitivity functions for this time-varying scenario add computational burden which negates the main advantage of the WFI method. Hence, future applications to time-invariant scenarios for small-body missions are also discussed.
AB - New advances in vision-based navigation for micro air vehicles (MAVs) have been inspired by the biological systems of flying insects and the use of optic flow. These biologically-inspired optical sensor systems for MAVs are computationally efficient and have low mass and low power consumption, which makes them attractive for small spacecraft. This study explores the applicability of the wide-field integration (WFI) of optic flow to a spacecraft operating in close proximity to an asteroid. In contrast with past WFI work, this study uses an asteroid-relative reference trajectory and known a priori environment model such that the optimal sensitivity functions are recalculated onboard the vehicle at each time step. Numerical simulations with computer-generated images of the asteroid surface are used to estimate the vehicle's translational and angular velocities. Although the accuracy of these state estimates are reasonable considering the noise in the optic flow measurements, the onboard recalculation of the sensitivity functions for this time-varying scenario add computational burden which negates the main advantage of the WFI method. Hence, future applications to time-invariant scenarios for small-body missions are also discussed.
UR - http://www.scopus.com/inward/record.url?scp=84876364995&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84876364995&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84876364995
SN - 9780877035770
T3 - Advances in the Astronautical Sciences
SP - 23
EP - 36
BT - ASTRODYNAMICS 2011 - Advances in the Astronautical Sciences
T2 - 2011 AAS/AIAA Astrodynamics Specialist Conference, ASTRODYNAMICS 2011
Y2 - 31 July 2011 through 4 August 2011
ER -