Abstract
The growth of the TiO2 thin films coated on the polypropylene beads was analyzed experimentally in a rotating cylindrical plasma chemical vapor deposition (PCVD) reactor. The precursors for the thin films were generated by plasma reactions, and they deposited on the polypropylene beads to become the uniform thin films. The TiO2 thin films grow more quickly on the polypropylene beads by increasing the mass flow rate of TTIP, or the rotation speed of the reactor. The smaller number of polypropylene beads in the reactor increases the growth rate of the thin films. The high-quality TiO 2 thin films can be coated on particles uniformly by using the rotating cylindrical PCVD process. The particles coated with high-quality TiO2 thin films can be applied to the removal of air and water pollutants by a photodegradation reaction of TiO2.
Original language | English |
---|---|
Pages (from-to) | 329-335 |
Number of pages | 7 |
Journal | Surface Review and Letters |
Volume | 17 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jun 2010 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Materials Chemistry