Abstract
We propose and evaluate two methods for accelerating differential evolution and interactive differential evolution (IDE). The first acceleration method, which we call DE/gravity, aims to realize performance similar to that of paired-comparison-based IDE/best while removing the requirement that the IDE user must choose the best individual among all displayed individuals. The second acceleration method generates not only a conventional trial vector but also a second and third trial vector. It calculates a moving average vector, X_〈moving〉, for the population between generations, and compares a given target vector with the three trial vectors of a conventional trial vector, a target vector + X_〈moving〉, and a trial vector + X_〈moving〉, and uses the best one among the four vectors as offspring in the next generation. We evaluate these acceleration methods and a conventional method by applying them to Gaussian mixture models and demonstrate the effectiveness of our proposed methods.
Original language | English |
---|---|
Pages (from-to) | 287-290 |
Number of pages | 4 |
Journal | International Conference on Genetic and Evolutionary Computing |
Issue number | 2011 |
Publication status | Published - Aug 29 2011 |