Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice

Naoki Makino, Toyoki Maeda, Jun ichi Oyama, Makoto Sasaki, Yoshihiro Higuchi, Koji Mimori, Takahiko Shimizu

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)


Oxidative stress plays a pathological role in the development of heart failure. This study examined telomere biology in heart/muscle-specific manganese superoxide dismutase-deficient mice (H/M-SOD2-/-), which develop progressive congestive heart failure and exhibit pathology typical of dilated cardiomyopathy. EUK-8 (25mg/kg/day), a superoxide dismutase and catalase mimetic, was administered to H/M-SOD2-/- mice for four weeks beginning at 8weeks of age. Telomere length, telomerase activity, telomere-associated proteins, and cell death signals were assessed in hearts from control wild-type mice (H/M-Sod2 lox/ lox) and H/M-SOD2-/- mice either treated or untreated with EUK-8. While cardiac function was unchanged in these experimental mice, the end-diastolic dimension in H/M-SOD2-/- mice was notably dilated and could be significantly reduced by EUK-8 treatment. At the end of the study, no shortening of telomere length was observed in heart tissues from all mice tested, but telomerase activity was decreased in heart tissue from H/M-SOD2-/- mice compared to control mice. Protein expression for telomerase reverse transcriptase and telomere repeat binding factor 2 was also downregulated in H/M-SOD2-/- heart tissue as was expression of phospho-Akt, insulin-like growth factor, and endothelial nitric oxide synthase. Expression levels of Sirt1, a lifespan modulator, were enhanced while FoxO3a was depressed in H/M-SOD2-/- hearts. All of the changes seen in H/M-SOD2-/- heart tissue could be inhibited by EUK-8 treatment. Taken together, the results suggest that oxidant stress might affect myocardial telomerase activity and telomere-associated proteins. Telomerase may therefore play a pivotal role in antioxidant defense mechanisms, and may be useful as a novel therapeutic tool for treating human heart failure.

Original languageEnglish
Pages (from-to)670-677
Number of pages8
JournalJournal of Molecular and Cellular Cardiology
Issue number4
Publication statusPublished - Apr 2011

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice'. Together they form a unique fingerprint.

Cite this