Anthracene based organic dipolar compounds for sensitized solar cells

Yan Zuo Lin, Chiung Hui Huang, Yuan Jay Chang, Chia Wei Yeh, Tsung Mei Chin, Kai Ming Chi, Po Ting Chou, Motonori Watanabe, Tahsin J. Chow

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

Organic dyes that consist of an anthracene moiety between a triphenylamine donor group and a cyanoacrylic acid acceptor group displayed remarkable solar-to-energy conversion efficiency in dye-sensitized solar cells. The planar geometry of anthracene and its bulky substituents helped the dyes to form a high quality monolayer on the surface of TiO2. A typical device made with the dye AN-Bu displayed a maximal photon-to-current conversion efficiency (IPCE) 65% in the region of 350-510 nm, a short-circuit photocurrent density (Jsc) 12.78 mA cm-2, an open-circuit photovoltage (V oc) 0.73 V, and a fill factor (FF) 0.67, corresponding to an overall conversion efficiency 6.23%. In an experiment of using deoxycholic acid (DCA) as a co-absorbent, the values of Voc stayed in a similar range, yet the values of Jsc were reduced in ca. 11% due to a decrease of loading amounts. This result indicated that the quality of the dye films cannot be further improved by the adding of DCA. The photophysical properties were analyzed with the aid of a time-dependent density functional theory (TDDFT) model with the B3LYP functional.

Original languageEnglish
Pages (from-to)262-269
Number of pages8
JournalTetrahedron
Volume70
Issue number2
DOIs
Publication statusPublished - Jan 14 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Drug Discovery
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Anthracene based organic dipolar compounds for sensitized solar cells'. Together they form a unique fingerprint.

Cite this