Analytical solution for self-induced motion of a helical vortex with a Gaussian core

V. L. Okulov, Y. Fukumoto

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


The paper presents an analytical solution for helical vortices with a Gaussian vorticity distribution in the core, which is confirmed by experimental and numerical simulations. This result is obtained by extending the Dyson method to the Biot–Savart law. Previously, analytical solutions were found and studied only for vortices with constant vorticity distribution in the core (a Rankine-type vortex core). One of the important issues raised during the discussion is the difference between self-induced movements of helical structures with both types of vortex core. The proposed solutions are important for the fundamental understanding and description of the behavior of helical eddy flows in various fields of industry and in nature. Examples include tip vortices behind the rotors of wind or hydro turbines, tornadoes, or axial vortices in aerodynamic devices such as vortex apparatuses and generators; cyclone separators, combustion chambers, etc.

Original languageEnglish
Pages (from-to)481-488
Number of pages8
JournalThermophysics and Aeromechanics
Issue number4
Publication statusPublished - Jul 2020

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Aerospace Engineering
  • Energy Engineering and Power Technology


Dive into the research topics of 'Analytical solution for self-induced motion of a helical vortex with a Gaussian core'. Together they form a unique fingerprint.

Cite this