Analysis of suprathermal nuclear processes in the solar core plasma

Victor T. Voronchev, Yasuyuki Nakao, Yukinobu Watanabe

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


A consistent model for the description of suprathermal processes in the solar core plasma naturally triggered by fast particles generated in exoergic nuclear reactions is formulated. This model, based on the formalism of in-flight reaction probability, operates with different methods of treating particle slow-down in the plasma, and allows for the influence of electron degeneracy and electron screening on processes in the matter. The model is applied to examine slowing-down of 8.7 MeV α-particles produced in the 7(p,α) α reaction of the pp chain, and to analyze suprathermal processes in the solar CNO cycle induced by them. Particular attention is paid to the suprathermal14(α,p) 17 reaction unappreciated in standard solar model simulations. It is found that an appreciable non-standard nuclear flow due to this reaction appears in the matter and modifies running of the CNO cycle in ∼95% of the solar core region. In this region at R > 0.1R, normal branching of nuclear flow 14N ← 17O → 18O transforms to abnormal sequential flow 14N ← 17O → 18O, altering some element abundances. In particular, nuclear network calculations reveal that in the outer core the abundances of 17O and 18O isotopes can increase by a factor of 20 as compared with standard estimates. A conjecture is made that other CNO suprathermal (α,p) reactions may also affect abundances of CNO elements, including those generating solar neutrinos.

Original languageEnglish
Article number045202
JournalJournal of Physics G: Nuclear and Particle Physics
Issue number4
Publication statusPublished - Mar 3 2017

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics


Dive into the research topics of 'Analysis of suprathermal nuclear processes in the solar core plasma'. Together they form a unique fingerprint.

Cite this