Analysis and modeling of char particle combustion with heat and multicomponent mass transfer

Hiroki Umetsu, Hiroaki Watanabe, Shiro Kajitani, Satoshi Umemoto

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


A char combustion model suitable for a large-scale boiler/gasifier simulation, which considers the variation of physical quantities in the radial direction of char particles, is developed and examined. The structural evolution within particles is formulated using the basic concept of the random pore model while simultaneously considering particle shrinkage. To reduce the computational cost, a new approximate analytical boundary condition is applied to the particle surface, which is approximately derived from the Stefan-Maxwell equations. The boundary condition showed reasonably good agreement with direct numerical integration with a fine grid resolution by the finite difference method under arbitrary conditions. The model was applied to combustion in a drop tube furnace and showed qualitatively good agreement with experiments, including for the burnout behavior in the late stages. It is revealed that the profiles of the oxygen mole fraction, conversion, and combustion rate have considerably different characteristics in small and large particles. This means that a model that considers one total conversion for each particle is insufficient to describe the state of particles. Since our char combustion model requires only one fitting parameter, which is determined from information on the internal geometry of char particles, it is useful for performing numerical simulations.

Original languageEnglish
Pages (from-to)2177-2191
Number of pages15
JournalCombustion and Flame
Issue number8
Publication statusPublished - Aug 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Chemical Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology
  • General Physics and Astronomy


Dive into the research topics of 'Analysis and modeling of char particle combustion with heat and multicomponent mass transfer'. Together they form a unique fingerprint.

Cite this