An essential epitope of anti-MUC1 monoclonal antibody KL-6 revealed by focused glycopeptide library

Naoki Ohyabu, Hiroshi Hinou, Takahiko Matsushita, Ryukou Izumi, Hiroki Shimizu, Keiko Kawamoto, Yoshito Numata, Hiroko Togame, Hiroshi Takemoto, Hirosato Kondo, Shin Ichiro Nishimura

Research output: Contribution to journalArticlepeer-review

72 Citations (Scopus)

Abstract

Human serum Krebs von den Lungen-6 (KL-6) antigen, a high-molecular-weight glycoprotein classified as a polymorphic epithelial mucin (MUC1), is a biomarker of diseases such as interstitial pneumonia, lung adenocarcinoma, breast cancer, colorectal adenocarcinoma, and hepatocellular carcinoma. Anti-KL-6 monoclonal antibody (anti-KL-6 MAb) is therefore a potential diagnostic and therapeutic reagent. Although glycosylation at Thr/Ser residues of the tandem-repeating MUC1 peptides appears to determine the disease-associated antigenic structures of KL-6, an essential epitope structure recognized by anti-KL-6 MAb remains unclear. In the present study, a novel compound library of synthetic MUC1 glycopeptides allowed the first rapid and precise evaluation of the specific epitope structure of anti-KL-6 MAb by combined use of a tailored glycopeptides library and common ELISA protocol. We demonstrated that the minimal antigenic structure, an essential epitope, recognized by anti-KL-6 MAb is a heptapeptide sequence Pro-Asp-Thr-Arg-Pro-Ala-Pro (PDTRPAP), in which the Thr residue is modified by Neu5Acα2,3Galβ1,3GalNAcα (2,3-sialyl T antigen, core 1-type O-glycan). Anti-KL-6 MAb did not bind with other tumor-relevant antigens, such as GalNAcα (Tn), Neu5Acα2,6GalNAcα (STn), and Galβ1,3GalNAcα (T), except for Neu5Acα2,3Galβ1,3- (Neu5Acα2,6)GalNAcα (2,3/2,6-disialyl T). However, anti-KL-6 MAb could not differentiate the above minimal antigenic glycopeptide from some core 2-based glycopeptides involving this crucial epitope structure and showed a similar binding affinity toward these compounds, indicating that branching at the O-6 position of GalNAc residue does not influence the interaction of anti-KL-6 MAb with some MUC1 glycoproteins involving an essential epitope. Actually, anti-KL-6 MAb reacts with 2,3/2,6-disialyl T having a 2,3-sialyl T component. This is why anti-KL-6 MAb often reacts with various kinds of tumor-derived MUC1 glycoproteins as well as a clinically important MUC1 glycoprotein biomarker of interstitial pneumonia, namely KL-6, originally discovered as a circulating pulmonary adenocarcinoma-associated antigen. In other words, combined use of anti-KL-6 MAb and some probes that can differentiate the sugars substituted at the O-6 position of the GalNAc residue in MUC1 glycopeptides including the PDTRPAP sequence might be a promising diagnostic protocol for individual disease-specific biomarkers. It was also revealed that glycosylation at neighboring Thr/Ser residues outside the immunodominant PDTRPAP motif strongly influences the interaction between anti-KL-6 MAb and MUC1 glycopeptides involving the identified epitope. Our novel strategy will greatly facilitate the processes for the identification of the tumor-specific and strong epitopes of various known anti-MUC1 MAbs and allow for their practical application in the generation of improved antibody immunotherapeutics, diagnostics, and MUC1-based cancer vaccines.

Original languageEnglish
Pages (from-to)17102-17109
Number of pages8
JournalJournal of the American Chemical Society
Volume131
Issue number47
DOIs
Publication statusPublished - Dec 2 2009
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'An essential epitope of anti-MUC1 monoclonal antibody KL-6 revealed by focused glycopeptide library'. Together they form a unique fingerprint.

Cite this