TY - JOUR
T1 - An analytical system for single-cell metabolomics of typical mammalian cells based on highly sensitive nano-liquid chromatography tandem mass spectrometry
AU - Nakatani, Kohta
AU - Izumi, Yoshihiro
AU - Hata, Kosuke
AU - Bamba, Takeshi
N1 - Funding Information:
We are grateful to Dr. Futa Sakakibara (Merck) for the technical support of PFPP-nano-LC columns. This study was supported by JST-CREST Program (JPMJCR15G4) of the Japan Science and Technology Agency (JST) (Y. I. and T. B.), a Grant-in-Aid for Scientific Research on Innovative Areas (17H06304) from Japan Society for the Promotion of Science (JSPS) (Y. I. and T. B.), and a Grant-in-Aid for
Funding Information:
We are grateful to Dr. Futa Sakakibara (Merck) for the technical support of PFPP-nano-LC columns. This study was supported by JST-CREST Program (JPMJCR15G4) of the Japan Science and Technology Agency (JST) (Y. I. and T. B.), a Grant-in-Aid for Scientific Research on Innovative Areas (17H06304) from Japan Society for the Promotion of Science (JSPS) (Y. I. and T. B.), and a Grant-in-Aid for Scientific Research (C) (19K05167) from JSPS (Y.I.).
Publisher Copyright:
© 2020 Kohta Nakatani, Yoshihiro Izumi, Kosuke Hata, and Takeshi Bamba.
PY - 2020
Y1 - 2020
N2 - The rapid development of next-generation sequencing techniques has enabled single-cell genomic and transcriptomic analyses, which have revealed the importance of heterogeneity in biological systems. However, analytical methods to accurately identify and quantify comprehensive metabolites from single mammalian cells with a typical diameter of 10–20 µm are still in the process of development. The aim of this study was to develop a single-cell metabolomic analytical system based on highly sensitive nanoliquid chromatography tandem mass spectrometry (nano-LC-MS/MS) with multiple reaction monitoring. A packed nano-LC column (3-µm particle-size pentafluorophenylpropyl Discovery HSF5 of dimensions 100 µm i.d.×180 mm) was prepared using a slurry technique. The optimized nano-LC-MS/MS method showed 3–132-fold (average value, 26-fold) greater sensitivity than semimicro-LC-MS/MS, and the detection limits for several hydrophilic metabolites, including amino acids and nucleic acid related metabolites were in the sub-fmol range. By combining live single-cell sampling and nano-LC-MS/MS, we successfully detected 18 relatively abundant hydrophilic metabolites (16 amino acids and 2 nucleic acid related metabo-lites) from single HeLa cells (n=22). Based on single-cell metabolic profiles, the 22 HeLa cells were classified into three distinct subclasses, suggesting differences in metabolic function in cultured HeLa cell populations. Our single-cell metabolomic analytical system represents a potentially useful tool for in-depth studies focused on cell metabolism and heterogeneity.
AB - The rapid development of next-generation sequencing techniques has enabled single-cell genomic and transcriptomic analyses, which have revealed the importance of heterogeneity in biological systems. However, analytical methods to accurately identify and quantify comprehensive metabolites from single mammalian cells with a typical diameter of 10–20 µm are still in the process of development. The aim of this study was to develop a single-cell metabolomic analytical system based on highly sensitive nanoliquid chromatography tandem mass spectrometry (nano-LC-MS/MS) with multiple reaction monitoring. A packed nano-LC column (3-µm particle-size pentafluorophenylpropyl Discovery HSF5 of dimensions 100 µm i.d.×180 mm) was prepared using a slurry technique. The optimized nano-LC-MS/MS method showed 3–132-fold (average value, 26-fold) greater sensitivity than semimicro-LC-MS/MS, and the detection limits for several hydrophilic metabolites, including amino acids and nucleic acid related metabolites were in the sub-fmol range. By combining live single-cell sampling and nano-LC-MS/MS, we successfully detected 18 relatively abundant hydrophilic metabolites (16 amino acids and 2 nucleic acid related metabo-lites) from single HeLa cells (n=22). Based on single-cell metabolic profiles, the 22 HeLa cells were classified into three distinct subclasses, suggesting differences in metabolic function in cultured HeLa cell populations. Our single-cell metabolomic analytical system represents a potentially useful tool for in-depth studies focused on cell metabolism and heterogeneity.
UR - http://www.scopus.com/inward/record.url?scp=85082130378&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082130378&partnerID=8YFLogxK
U2 - 10.5702/massspectrometry.A0080
DO - 10.5702/massspectrometry.A0080
M3 - Article
AN - SCOPUS:85082130378
SN - 2187-137X
VL - 9
JO - Mass Spectrometry
JF - Mass Spectrometry
IS - 1
M1 - A0080
ER -