TY - JOUR
T1 - Alteration of UO2+x under oxidizing conditions, Marshall Pass, Colorado, USA
AU - Deditius, A. P.
AU - Utsunomiya, S.
AU - Ewing, R. C.
N1 - Funding Information:
The authors are grateful to the L. Shuller for her careful review of this manuscript. This work was supported by the Office of Science and Technology and International (OST&I) of the Office of Civilian Radioactive Waste Management (DE FC28 04RW12254). The views, opinions, findings and conclusions or recommendations of the authors expressed herein do not necessarily state or reflect those of DOE/OCRWM/OSTI.
PY - 2007/11
Y1 - 2007/11
N2 - As a natural analogue of the processes and products of spent nuclear fuel (SNF) alteration, we have examined the sequence of phases that form during the alteration of natural UO2+x in a U-deposit at Marshall Pass, Colorado. We have determined the paragenesis of U(VI)-phases including the fate of trace elements: W, Mo, As, Sb, Cu, Ba, Ce, Y, Pb and Th. Enrichment of trace elements, especially W and Mo, in this system resulted in a unique alteration sequence: uraninite → amorphous U-oxyhydrate gel → schoepite(I)/vandendriesscheite/compreignacite → uranophane → schoepite(II)/"dehydrated" schoepite(I) → Ba-Mo-W-U phase/U-arsenates/U-Sb phase → "dehydrated schoepite" (II) → soddyite/swamboite. In this sequence, the Ba-Mo-W uranyl phase and U-Sb phase are newly characterized phases. These results suggest that the UO2+x alteration, involving higher concentrations of certain radionuclides and metallic compounds, may lead to a different paragenesis of U(VI)-phases, as compared with the expected alteration sequence of UO2 interacting with a typical groundwaters. This was also noted in a previous study of the alteration of Pb-rich uraninite [R.J. Finch, R.C. Ewing, J. Nucl. Mater. 190 (1992) 133-156]. Some trace elements, such as CaO 2.08 wt.%, PbO 1.69 wt.%, WO3 1.39 wt.%, As2O3 0.50 wt.% and MoO3 0.41 wt.%, can locally concentrate, but still form uranyl phases. As a consequence, the mobility of U and radionuclides is governed by the stability of these metal-uranyl phases, such as Pb-oxide hydrates, Ba-uranyl molybdates/ tungstates and U-antimonate.
AB - As a natural analogue of the processes and products of spent nuclear fuel (SNF) alteration, we have examined the sequence of phases that form during the alteration of natural UO2+x in a U-deposit at Marshall Pass, Colorado. We have determined the paragenesis of U(VI)-phases including the fate of trace elements: W, Mo, As, Sb, Cu, Ba, Ce, Y, Pb and Th. Enrichment of trace elements, especially W and Mo, in this system resulted in a unique alteration sequence: uraninite → amorphous U-oxyhydrate gel → schoepite(I)/vandendriesscheite/compreignacite → uranophane → schoepite(II)/"dehydrated" schoepite(I) → Ba-Mo-W-U phase/U-arsenates/U-Sb phase → "dehydrated schoepite" (II) → soddyite/swamboite. In this sequence, the Ba-Mo-W uranyl phase and U-Sb phase are newly characterized phases. These results suggest that the UO2+x alteration, involving higher concentrations of certain radionuclides and metallic compounds, may lead to a different paragenesis of U(VI)-phases, as compared with the expected alteration sequence of UO2 interacting with a typical groundwaters. This was also noted in a previous study of the alteration of Pb-rich uraninite [R.J. Finch, R.C. Ewing, J. Nucl. Mater. 190 (1992) 133-156]. Some trace elements, such as CaO 2.08 wt.%, PbO 1.69 wt.%, WO3 1.39 wt.%, As2O3 0.50 wt.% and MoO3 0.41 wt.%, can locally concentrate, but still form uranyl phases. As a consequence, the mobility of U and radionuclides is governed by the stability of these metal-uranyl phases, such as Pb-oxide hydrates, Ba-uranyl molybdates/ tungstates and U-antimonate.
UR - http://www.scopus.com/inward/record.url?scp=34548137386&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34548137386&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2007.02.095
DO - 10.1016/j.jallcom.2007.02.095
M3 - Article
AN - SCOPUS:34548137386
SN - 0925-8388
VL - 444-445
SP - 584
EP - 589
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
IS - SPEC. ISS.
ER -