TY - JOUR
T1 - Activation mechanism of Gi and Go by reactive oxygen species
AU - Nishida, Motohiro
AU - Schey, Kevin L.
AU - Takagahara, Shuichi
AU - Kontani, Kenji
AU - Katada, Toshiaki
AU - Urano, Yasuteru
AU - Nagano, Tetsuo
AU - Nagao, Taku
AU - Kurose, Hitoshi
PY - 2002/3/15
Y1 - 2002/3/15
N2 - Reactive oxygen species are proposed to work as intracellular mediators. One of their target proteins is the a subunit of heterotrimeric GTP-binding proteins (Gαi and Gαo), leading to activation. H2O2 is one of the reactive oxygen species and activates purified Gαi2. However, the activation requires the presence of Fe2+, suggesting that H2O2 is converted to more reactive species such as ·OH. The analysis with mass spectrometry shows that seven cysteine residues (Cys66, Cys112, Cys140, Cys255, Cys287, Cys326, and Cys352) of Gαi2 are modified by the treatment with ·OH. Among these cysteine residues, Cys66, Cys112, Cys140, Cys255, and Cys352 are not involved in ·OH-induced activation of Gαi2. Although the modification of Cys287 but not Cys326 is required for subunit dissociation, the modification of both Cys287 and Cys326 is necessary for the activation of Gαi2 as determined by pertussis toxin-catalyzed ADP-ribosylation, conformation-dependent change of trypsin digestion pattern or guanosine 5′.3-O.(thio)triphosphate binding. Wild type Gαi2 but not Cys287- or Cys326-substituted mutants are activated by UV light, singlet oxygen, superoxide anion, and nitric oxide, indicating that these oxidative stresses activate Gαi2 by the mechanism similar to ·OH-induced activation. Because Cys287 exists only in Gi family, this study explains the selective activation of Gi/Go by oxidative stresses.
AB - Reactive oxygen species are proposed to work as intracellular mediators. One of their target proteins is the a subunit of heterotrimeric GTP-binding proteins (Gαi and Gαo), leading to activation. H2O2 is one of the reactive oxygen species and activates purified Gαi2. However, the activation requires the presence of Fe2+, suggesting that H2O2 is converted to more reactive species such as ·OH. The analysis with mass spectrometry shows that seven cysteine residues (Cys66, Cys112, Cys140, Cys255, Cys287, Cys326, and Cys352) of Gαi2 are modified by the treatment with ·OH. Among these cysteine residues, Cys66, Cys112, Cys140, Cys255, and Cys352 are not involved in ·OH-induced activation of Gαi2. Although the modification of Cys287 but not Cys326 is required for subunit dissociation, the modification of both Cys287 and Cys326 is necessary for the activation of Gαi2 as determined by pertussis toxin-catalyzed ADP-ribosylation, conformation-dependent change of trypsin digestion pattern or guanosine 5′.3-O.(thio)triphosphate binding. Wild type Gαi2 but not Cys287- or Cys326-substituted mutants are activated by UV light, singlet oxygen, superoxide anion, and nitric oxide, indicating that these oxidative stresses activate Gαi2 by the mechanism similar to ·OH-induced activation. Because Cys287 exists only in Gi family, this study explains the selective activation of Gi/Go by oxidative stresses.
UR - http://www.scopus.com/inward/record.url?scp=0037085709&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037085709&partnerID=8YFLogxK
U2 - 10.1074/jbc.M107392200
DO - 10.1074/jbc.M107392200
M3 - Article
C2 - 11781308
AN - SCOPUS:0037085709
SN - 0021-9258
VL - 277
SP - 9036
EP - 9042
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 11
ER -