Action recognition using three-way cross-correlations feature of local motion attributes

Tetsu Matsukawa, Takio Kurita

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)

Abstract

This paper proposes a spatio-temporal feature using three-way cross-correlations of local motion attributes for action recognition. Recently, the cubic higher-order local auto-correlations (CHLAC) feature has been shown high classification performances for action recognition. In previous researches, CHLAC feature was applied to binary motion image sequences that indicates moving or static points. However, each binary motion image lost informations about the type of motion such as timing of change or motion direction. Therefore, we can improve the classification accuracy further by extending CHLAC to multivalued motion image sequences that considered several types of local motion attributes. The proposed method is also viewed as an extension of popular bag-of-features approach. Experimental results using two datasets shows proposed method outperformed CHLAC features and bag-of-features approach.

Original languageEnglish
Title of host publicationProceedings - 2010 20th International Conference on Pattern Recognition, ICPR 2010
Pages1731-1734
Number of pages4
DOIs
Publication statusPublished - 2010
Externally publishedYes
Event2010 20th International Conference on Pattern Recognition, ICPR 2010 - Istanbul, Turkey
Duration: Aug 23 2010Aug 26 2010

Publication series

NameProceedings - International Conference on Pattern Recognition
ISSN (Print)1051-4651

Other

Other2010 20th International Conference on Pattern Recognition, ICPR 2010
Country/TerritoryTurkey
CityIstanbul
Period8/23/108/26/10

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Action recognition using three-way cross-correlations feature of local motion attributes'. Together they form a unique fingerprint.

Cite this