TY - JOUR
T1 - Accumulation of prion protein in muscle fibers of experimental chloroquine myopathy
T2 - In vivo model for deposition of prion protein in non-neuronal tissues
AU - Furukawa, Hisako
AU - Doh-Ura, Katsumi
AU - Sasaki, Kensuke
AU - Iwaki, Toru
N1 - Funding Information:
This work was supported by a grant (H13-kokoro-025) to KD from the Ministry of Health, Labor and Welfare of Japan.
PY - 2004/7
Y1 - 2004/7
N2 - Prion protein (PrP) is known to accumulate in some non-neuronal tissues under conditions unrelated to prion diseases. The biochemical and biological nature of such accumulated PrP molecules, however, has not been fully evaluated. In this study, we established experimental myopathy in hamsters by long-term administration of chloroquine, and we examined the nature of the PrP molecules that accumulated. PrP accumulation was immunohistochemically demonstrated in autophagic vacuoles in degenerated muscle fibers, and this was accompanied by the accumulation of other molecules related to the neuropathogenesis of prion diseases such as clathrin, cathepsin B, heparan sulfate, and apolipoprotein J. Accumulated PrP molecules were partially insoluble in detergent solution and were slightly less sensitive to proteinase K digestion than normal cellular PrP. Muscle homogenates containing these PrP molecules did not cause disease in inoculated hamsters. The findings indicate that the PrP molecules that accumulated in muscle fibers have distinct biochemical and biological properties. Therefore, experimental chloroquine myopathy is a novel and useful model to investigate the mechanism of deposition of PrP in non-neuronal tissues and might provide new insights in the pathogenesis of prion diseases.
AB - Prion protein (PrP) is known to accumulate in some non-neuronal tissues under conditions unrelated to prion diseases. The biochemical and biological nature of such accumulated PrP molecules, however, has not been fully evaluated. In this study, we established experimental myopathy in hamsters by long-term administration of chloroquine, and we examined the nature of the PrP molecules that accumulated. PrP accumulation was immunohistochemically demonstrated in autophagic vacuoles in degenerated muscle fibers, and this was accompanied by the accumulation of other molecules related to the neuropathogenesis of prion diseases such as clathrin, cathepsin B, heparan sulfate, and apolipoprotein J. Accumulated PrP molecules were partially insoluble in detergent solution and were slightly less sensitive to proteinase K digestion than normal cellular PrP. Muscle homogenates containing these PrP molecules did not cause disease in inoculated hamsters. The findings indicate that the PrP molecules that accumulated in muscle fibers have distinct biochemical and biological properties. Therefore, experimental chloroquine myopathy is a novel and useful model to investigate the mechanism of deposition of PrP in non-neuronal tissues and might provide new insights in the pathogenesis of prion diseases.
UR - http://www.scopus.com/inward/record.url?scp=3042689203&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3042689203&partnerID=8YFLogxK
U2 - 10.1038/labinvest.3700111
DO - 10.1038/labinvest.3700111
M3 - Article
C2 - 15122307
AN - SCOPUS:3042689203
SN - 0023-6837
VL - 84
SP - 828
EP - 835
JO - Laboratory Investigation
JF - Laboratory Investigation
IS - 7
ER -