A unique autothermal thermophilic aerobic digestion process showing a dynamic transition of physicochemical and bacterial characteristics from the mesophilic to the thermophilic phase

Yukihiro Tashiro, Kosuke Kanda, Yuya Asakura, Toshihiko Kii, Huijun Cheng, Pramod Poudel, Yuki Okugawa, Kosuke Tashiro, Kenji Sakai

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

A unique autothermal thermophilic aerobic digestion (ATAD) process has been used to convert human excreta to liquid fertilizer in Japan. This study investigated the changes in physicochemical and bacterial community characteristics during the full-scale ATAD process operated for approximately 3 weeks in 2 different years. After initiating simultaneous aeration and mixing using an air-inducing circulator (aerator), the temperature autothermally increased rapidly in the first 1 to 2 days with exhaustive oxygen consumption, leading to a drastic decrease and gradual increase in oxidation-reduction potential in the first 2 days, reached > 50°C in the middle 4 to 6 days, and remained steady in the final phase. Volatile fatty acids were rapidly consumed and diminished in the first 2 days, whereas the ammonia nitrogen concentration was relatively stable during the process, despite a gradual pH increase to 9.3. Principal-coordinate analysis of 16S rRNA gene amplicons using next-generation sequencing divided the bacterial community structures into distinct clusters corresponding to three phases, and they were similar in the final phase in both years despite different transitions in the middle phase. The predominant phyla (closest species, dominancy) in the initial, middle, and final phases were Proteobacteria (Arcobacter trophiarum, 19 to 43%; Acinetobacter towneri, 6.3 to 30%), Bacteroidetes (Moheibacter sediminis, 43 to 54%), and Firmicutes (Thermaerobacter composti, 11 to 28%; Heliorestis baculata, 2.1 to 16%), respectively. Two predominant operational taxonomic units (OTUs) in the final phase showed very low similarities to the closest species, indicating that the process is unique compared with previously published ones. This unique process with three distinctive phases would be caused by the aerator with complete aeration.

Original languageEnglish
Article numbere02537-17
JournalApplied and environmental microbiology
Volume84
Issue number6
DOIs
Publication statusPublished - Mar 1 2018

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Food Science
  • Applied Microbiology and Biotechnology
  • Ecology

Fingerprint

Dive into the research topics of 'A unique autothermal thermophilic aerobic digestion process showing a dynamic transition of physicochemical and bacterial characteristics from the mesophilic to the thermophilic phase'. Together they form a unique fingerprint.

Cite this