TY - JOUR
T1 - A superhydrophilic titanium implant functionalized by ozone gas modulates bone marrow cell and macrophage responses
AU - Sunarso,
AU - Toita, Riki
AU - Tsuru, Kanji
AU - Ishikawa, Kunio
N1 - Publisher Copyright:
© 2016, Springer Science+Business Media New York.
PY - 2016/8/1
Y1 - 2016/8/1
N2 - Bone-forming cells and Mϕ play key roles in bone tissue repair. In this study, we prepared a superhydrophilic titanium implant functionalized by ozone gas to modulate osteoconductivity and inhibit inflammatory response towards titanium implants. After 24 h of ozone gas treatment, the water contact angle of the titanium surface became zero. XPS analysis revealed that hydroxyl groups were greatly increased, but carbon contaminants were largely decreased 24 h after ozone gas functionalization. Also, ozone gas functionalization did not alter titanium surface topography. Superhydrophilic titanium (O3–Ti) largely increased the aspect ratio, size and perimeter of cells when compared with untreated titanium (unTi). In addition, O3–Ti facilitated rat bone marrow derived MSCs differentiation and mineralization evidenced by greater ALP activity and bone-like nodule formation. Interestingly, O3–Ti did not affect RAW264.7 Mϕ proliferation. However, naive RAW264.7 Mϕ cultured on unTi produced a two-fold larger amount of TNFα than that on O3–Ti. Furthermore, O3–Ti greatly mitigated proinflammatory cytokine production, including TNFα and IL-6 from LSP-stimulated RAW264.7 Mϕ. These results demonstrated that a superhydrophilic titanium prepared by simple ozone gas functionalization successfully increased MSCs proliferation and differentiation, and mitigated proinflammatory cytokine production from both naive and LPS-stimulated Mϕ. This superhydrophilic surface would be useful as an endosseous implantable biomaterials and as a biomaterial for implantation into other tissues.
AB - Bone-forming cells and Mϕ play key roles in bone tissue repair. In this study, we prepared a superhydrophilic titanium implant functionalized by ozone gas to modulate osteoconductivity and inhibit inflammatory response towards titanium implants. After 24 h of ozone gas treatment, the water contact angle of the titanium surface became zero. XPS analysis revealed that hydroxyl groups were greatly increased, but carbon contaminants were largely decreased 24 h after ozone gas functionalization. Also, ozone gas functionalization did not alter titanium surface topography. Superhydrophilic titanium (O3–Ti) largely increased the aspect ratio, size and perimeter of cells when compared with untreated titanium (unTi). In addition, O3–Ti facilitated rat bone marrow derived MSCs differentiation and mineralization evidenced by greater ALP activity and bone-like nodule formation. Interestingly, O3–Ti did not affect RAW264.7 Mϕ proliferation. However, naive RAW264.7 Mϕ cultured on unTi produced a two-fold larger amount of TNFα than that on O3–Ti. Furthermore, O3–Ti greatly mitigated proinflammatory cytokine production, including TNFα and IL-6 from LSP-stimulated RAW264.7 Mϕ. These results demonstrated that a superhydrophilic titanium prepared by simple ozone gas functionalization successfully increased MSCs proliferation and differentiation, and mitigated proinflammatory cytokine production from both naive and LPS-stimulated Mϕ. This superhydrophilic surface would be useful as an endosseous implantable biomaterials and as a biomaterial for implantation into other tissues.
UR - http://www.scopus.com/inward/record.url?scp=84976495299&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84976495299&partnerID=8YFLogxK
U2 - 10.1007/s10856-016-5741-2
DO - 10.1007/s10856-016-5741-2
M3 - Article
C2 - 27344451
AN - SCOPUS:84976495299
SN - 0957-4530
VL - 27
JO - Journal of Materials Science: Materials in Medicine
JF - Journal of Materials Science: Materials in Medicine
IS - 8
M1 - 127
ER -