A-Site and B-Site Charge Orderings in an s-d Level Controlled Perovskite Oxide PbCoO3

Yuki Sakai, Junye Yang, Runze Yu, Hajime Hojo, Ikuya Yamada, Ping Miao, Sanghyun Lee, Shuki Torii, Takashi Kamiyama, Marjana Ležaić, Gustav Bihlmayer, Masaichiro Mizumaki, Jun Komiyama, Takashi Mizokawa, Hajime Yamamoto, Takumi Nishikubo, Yuichiro Hattori, Kengo Oka, Yunyu Yin, Jianhong DaiWenmin Li, Shigenori Ueda, Akihisa Aimi, Daisuke Mori, Yoshiyuki Inaguma, Zhiwei Hu, Takayuki Uozumi, Changqing Jin, Youwen Long, Masaki Azuma

Research output: Contribution to journalArticlepeer-review

48 Citations (Scopus)


Perovskite PbCoO3 synthesized at 12 GPa was found to have an unusual charge distribution of Pb2+Pb4+3Co2+2Co3+2O12 with charge orderings in both the A and B sites of perovskite ABO3. Comprehensive studies using density functional theory (DFT) calculation, electron diffraction (ED), synchrotron X-ray diffraction (SXRD), neutron powder diffraction (NPD), hard X-ray photoemission spectroscopy (HAXPES), soft X-ray absorption spectroscopy (XAS), and measurements of specific heat as well as magnetic and electrical properties provide evidence of lead ion and cobalt ion charge ordering leading to Pb2+Pb4+3Co2+2Co3+2O12 quadruple perovskite structure. It is shown that the average valence distribution of Pb3.5+Co2.5+O3 between Pb3+Cr3+O3 and Pb4+Ni2+O3 can be stabilized by tuning the energy levels of Pb 6s and transition metal 3d orbitals.

Original languageEnglish
Pages (from-to)4574-4581
Number of pages8
JournalJournal of the American Chemical Society
Issue number12
Publication statusPublished - Mar 29 2017
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'A-Site and B-Site Charge Orderings in an s-d Level Controlled Perovskite Oxide PbCoO3'. Together they form a unique fingerprint.

Cite this