Abstract
In order to determine the magnitude and the position of the plasma current in a long pulsed tokamak such as the International Thermonuclear Experimental Reactor (ITER), it is urged to establish a reliable method which is free from the zero-level drift of the integrator as well as the radiation damage for the steady-state magnetic field measurement. For this purpose, we have developed a hybrid system, a combination of a conventional magnetic probe for the measurement of fast varying magnetic field and a rotating coil magnetic probe for that of slowly varying field. The rotating coil is energized by an air turbine to avoid electromagnetic interference and the induce signal with a constant rotation frequency is picked up through a transformer to eliminate mechanical contacts. An automatic gain control circuit is also designed for the compensation of rotation speed fluctuation. The system is proved to achieve a flat frequency response with a proper choice of cross over frequency for high- and low-frequency systems. The rotating coil probe is tested for over 170 h without any trouble. The probe was applied to the poloidal magnetic field measurement on the TRIAM-1M long pulsed tokamak, and proved to work satisfactorily.
Original language | English |
---|---|
Pages (from-to) | 445-448 |
Number of pages | 4 |
Journal | Review of Scientific Instruments |
Volume | 70 |
Issue number | 1 II |
DOIs | |
Publication status | Published - Jan 1999 |
All Science Journal Classification (ASJC) codes
- Instrumentation