TY - JOUR
T1 - A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphophology
AU - Kuronita, Toshio
AU - Eskelinen, Eeva Liisa
AU - Fujita, Hideaki
AU - Saftig, Paul
AU - Himeno, Masaru
AU - Tanaka, Yoshitaka
PY - 2002/11/1
Y1 - 2002/11/1
N2 - LGP85 (LIMP II) is a type III transmembrane glycoprotein that is located primarily in the limiting membranes of lysosomes and late endosomes. Despite being the abundant molecule of these compartments, whether LGP85 merely resides as one of the constituents of these membranes or plays a role in the regulation of endosome and lysosome biogenesis remains unclear. To elucidate these questions, we examined the effects of overexpression of LGP85 on the morphology and membrane traffic of the endosomal/lysosomal system. Here we demonstrate that overexpression of LGP85 causes an enlargement of early endosomes and late endosomes/lysosomes. Such a morphological alteration was not observed by overexpression of other lysosomal membrane proteins, LGP107 (LAMP-1) or LGP96 (LAMP-2), reflecting a LGP85-specific function. We further demonstrate that overexpression of LGP85 impairs the endocytic membrane traffic out of these enlarged compartments, which may be correlated with or account for the accumulation of cholesterol observed in these compartments. Interestingly, co-transfection of LGP85 and the dominant-negative form of Rab5b (Rab5bS34N) abolished the formation of large vacuoles, suggesting that the GTP-bound active form of Rab5b is involved in the enlargement of endosomal/lysosomal compartments induced by overexpression of LGP85. Thus, these findings provide important new insights into the role of LGP85 in the biogenesis and the maintenance of endosomes/lysosomes. We conclude that LGP85 may participate in reorganizing the endosomal/lysosomal compartments.
AB - LGP85 (LIMP II) is a type III transmembrane glycoprotein that is located primarily in the limiting membranes of lysosomes and late endosomes. Despite being the abundant molecule of these compartments, whether LGP85 merely resides as one of the constituents of these membranes or plays a role in the regulation of endosome and lysosome biogenesis remains unclear. To elucidate these questions, we examined the effects of overexpression of LGP85 on the morphology and membrane traffic of the endosomal/lysosomal system. Here we demonstrate that overexpression of LGP85 causes an enlargement of early endosomes and late endosomes/lysosomes. Such a morphological alteration was not observed by overexpression of other lysosomal membrane proteins, LGP107 (LAMP-1) or LGP96 (LAMP-2), reflecting a LGP85-specific function. We further demonstrate that overexpression of LGP85 impairs the endocytic membrane traffic out of these enlarged compartments, which may be correlated with or account for the accumulation of cholesterol observed in these compartments. Interestingly, co-transfection of LGP85 and the dominant-negative form of Rab5b (Rab5bS34N) abolished the formation of large vacuoles, suggesting that the GTP-bound active form of Rab5b is involved in the enlargement of endosomal/lysosomal compartments induced by overexpression of LGP85. Thus, these findings provide important new insights into the role of LGP85 in the biogenesis and the maintenance of endosomes/lysosomes. We conclude that LGP85 may participate in reorganizing the endosomal/lysosomal compartments.
UR - http://www.scopus.com/inward/record.url?scp=1842866714&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1842866714&partnerID=8YFLogxK
U2 - 10.1242/jcs.00075
DO - 10.1242/jcs.00075
M3 - Review article
C2 - 12356916
AN - SCOPUS:1842866714
SN - 0021-9533
VL - 115
SP - 4117
EP - 4131
JO - Journal of cell science
JF - Journal of cell science
IS - 21
ER -