A plasmonic metasurface reveals differential motility of breast cancer cell lines at initial phase of adhesion

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

A plasmonic metasurface composed of a self-assembled monolayer of gold nanoparticles allows for fluorescence imaging with high spatial resolution, owing to the collective excitation of localized surface plasmon resonance. Taking advantage of fluorescence imaging confined to the nano-interface, we examined actin organization in breast cancer cell lines with different metastatic potentials during cell adhesion. Live-cell fluorescence imaging confined within tens of nanometers from the substrate shows a high actin density spanning < 1 μm from the cell edge. Live-cell imaging revealed that the breast cancer cell lines exhibited different actin patterns during the initial phase of cell adhesion (∼ 1 h). Non-tumorous MCF10A cells exhibited symmetric actin localization at the cell edge, whereas highly metastatic MDA-MB-231 cells showed asymmetric actin localization, demonstrating rapid polarization of MDA-MB-231 cells upon adhesion. The rapid actin organization observed by our plasmonic metasurface-based fluorescence imaging provides information on how quickly cancer cells sense the underlying substrate.

Original languageEnglish
Article number113876
JournalColloids and Surfaces B: Biointerfaces
Volume238
DOIs
Publication statusPublished - Jun 2024

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Surfaces and Interfaces
  • Physical and Theoretical Chemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'A plasmonic metasurface reveals differential motility of breast cancer cell lines at initial phase of adhesion'. Together they form a unique fingerprint.

Cite this