TY - JOUR
T1 - A novel transition-state analogue for lysozyme, 4-O-β-Tri-N- acetylchitotriosyl moranoline, provided evidence supporting the covalent glycosyl-enzyme intermediate
AU - Ogata, Makoto
AU - Umemoto, Naoyuki
AU - Ohnuma, Takayuki
AU - Numata, Tomoyuki
AU - Suzuki, Akari
AU - Usui, Taichi
AU - Fukamizo, Tamo
PY - 2013/3/1
Y1 - 2013/3/1
N2 - 4-O-β-Di-N-acetylchitobiosyl moranoline (2) and 4-O-β-tri- Nacetylchitotriosyl moranoline (3) were produced by lysozyme-mediated transglycosylation from the substrates tetra-N-acetylchitotetraose, (GlcNAc)4, and moranoline, and the binding modes of 2 and 3 to hen egg white lysozyme (HEWL) was examined by inhibition kinetics, isothermal titration calorimetry (ITC), and x-ray crystallography. Compounds 2 and 3 specifically bound to HEWL, acting as competitive inhibitors with Ki values of 2.01 × 10-5 and 1.84 × 10-6 M, respectively. From IT Canalysis, the binding of 3 was found to be driven by favorable enthalpy change (ΔHr°), which is similar to those obtained for 2 and (GlcNAc)4. However, the entropy loss (-TΔSr°) for the binding of 3 was smaller than those of 2 and (GlcNAc)4. Thusthe binding of 3 was found to bemorefavorable than those of the others. Judging from the Kd value of 3 (760 nM), the compound appears to have the highest affinity among the lysozyme inhibitors identified to date. X-ray crystal structure of HEWLin a complex with 3 showed that compound 3 binds to subsites -4 to -1 and the moranoline moiety adopts an undistorted 4C1 chair conformation almost overlapping with the -1 sugar covalentlyboundtoAsp-52ofHEWL(Vocadlo, Davies, G. J., Laine, R., and Withers, S. G. (2001) Nature 412, 835-838). From these results, we concluded that compound 3 serves as a transition-state analogue for lysozyme providing additional evidence supporting the covalent glycosyl-enzyme intermediate in the catalytic reaction.
AB - 4-O-β-Di-N-acetylchitobiosyl moranoline (2) and 4-O-β-tri- Nacetylchitotriosyl moranoline (3) were produced by lysozyme-mediated transglycosylation from the substrates tetra-N-acetylchitotetraose, (GlcNAc)4, and moranoline, and the binding modes of 2 and 3 to hen egg white lysozyme (HEWL) was examined by inhibition kinetics, isothermal titration calorimetry (ITC), and x-ray crystallography. Compounds 2 and 3 specifically bound to HEWL, acting as competitive inhibitors with Ki values of 2.01 × 10-5 and 1.84 × 10-6 M, respectively. From IT Canalysis, the binding of 3 was found to be driven by favorable enthalpy change (ΔHr°), which is similar to those obtained for 2 and (GlcNAc)4. However, the entropy loss (-TΔSr°) for the binding of 3 was smaller than those of 2 and (GlcNAc)4. Thusthe binding of 3 was found to bemorefavorable than those of the others. Judging from the Kd value of 3 (760 nM), the compound appears to have the highest affinity among the lysozyme inhibitors identified to date. X-ray crystal structure of HEWLin a complex with 3 showed that compound 3 binds to subsites -4 to -1 and the moranoline moiety adopts an undistorted 4C1 chair conformation almost overlapping with the -1 sugar covalentlyboundtoAsp-52ofHEWL(Vocadlo, Davies, G. J., Laine, R., and Withers, S. G. (2001) Nature 412, 835-838). From these results, we concluded that compound 3 serves as a transition-state analogue for lysozyme providing additional evidence supporting the covalent glycosyl-enzyme intermediate in the catalytic reaction.
UR - http://www.scopus.com/inward/record.url?scp=84874783165&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874783165&partnerID=8YFLogxK
U2 - 10.1074/jbc.M112.439281
DO - 10.1074/jbc.M112.439281
M3 - Article
C2 - 23303182
AN - SCOPUS:84874783165
SN - 0021-9258
VL - 288
SP - 6072
EP - 6082
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 9
ER -