TY - JOUR
T1 - A molecular roadmap for the emergence of early-embryonic-like cells in culture
AU - Rodriguez-Terrones, Diego
AU - Gaume, Xavier
AU - Ishiuchi, Takashi
AU - Weiss, Amélie
AU - Kopp, Arnaud
AU - Kruse, Kai
AU - Penning, Audrey
AU - Vaquerizas, Juan M.
AU - Brino, Laurent
AU - Torres-Padilla, Maria Elena
N1 - Funding Information:
We thank A. Smith (Wellcome Trust/MRC Stem Cell Institute) for providing the knock-in REX1 reporter cell line, M. Ko (Keio University) for the Zscan4c promoter plasmid, R. Enriquez-Gasca for providing a classification of MERVLs before publication, D. Reinberg (New York University Langone School of Medicine) for the rabbit antibody to PRDM14, A. Ettinger for time-lapse analysis, C. Ebel, D. Pich, T. Hofer and W. Hammerschmidt for help and access to FACS, the INGESTEM infrastructure for access to the IGBMC high-throughput high-content screening workstation, C. Thibault, F. Recillas-Targa and M. Zurita-Ortega for helpful discussions and A. Burton for critical reading of the manuscript. M.-E.T.-P. acknowledges funding from EpiGeneSys NoE, ERC-Stg ‘NuclearPotency’ (280840), the EMBO Young Investigator Programme, the Fondation Schlumberger pour l’Education et la Recherche (2016-Torres-Padilla) and the Helmholtz Association. J.M.V. acknowledges funding from the Max Planck Society and Epigenesys NoE. T.I. was a recipient of postdoctoral fellowships from the Uehara Memorial Foundation and the Human Frontier Science Programme (LT000015/2012-l). D.R.-T. was partially supported by a DGECI fellowship (2890/2014) from the National University of Mexico.
Publisher Copyright:
© 2017 The Author(s).
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Unlike pluripotent cells, which generate only embryonic tissues, totipotent cells can generate a full organism, including extra-embryonic tissues. A rare population of cells resembling 2-cell-stage embryos arises in pluripotent embryonic stem (ES) cell cultures. These 2-cell-like cells display molecular features of totipotency and broader developmental plasticity. However, their specific nature and the process through which they arise remain outstanding questions. Here we identified intermediate cellular states and molecular determinants during the emergence of 2-cell-like cells. By deploying a quantitative single-cell expression approach, we identified an intermediate population characterized by expression of the transcription factor ZSCAN4 as a precursor of 2-cell-like cells. By using a small interfering RNA (siRNA) screen, we identified epigenetic regulators of 2-cell-like cell emergence, including the non-canonical PRC1 complex PRC1.6 and the EP400-TIP60 complex. Our data shed light on the mechanisms that underlie exit from the ES cell state toward the formation of early-embryonic-like cells in culture and identify key epigenetic pathways that promote this transition.
AB - Unlike pluripotent cells, which generate only embryonic tissues, totipotent cells can generate a full organism, including extra-embryonic tissues. A rare population of cells resembling 2-cell-stage embryos arises in pluripotent embryonic stem (ES) cell cultures. These 2-cell-like cells display molecular features of totipotency and broader developmental plasticity. However, their specific nature and the process through which they arise remain outstanding questions. Here we identified intermediate cellular states and molecular determinants during the emergence of 2-cell-like cells. By deploying a quantitative single-cell expression approach, we identified an intermediate population characterized by expression of the transcription factor ZSCAN4 as a precursor of 2-cell-like cells. By using a small interfering RNA (siRNA) screen, we identified epigenetic regulators of 2-cell-like cell emergence, including the non-canonical PRC1 complex PRC1.6 and the EP400-TIP60 complex. Our data shed light on the mechanisms that underlie exit from the ES cell state toward the formation of early-embryonic-like cells in culture and identify key epigenetic pathways that promote this transition.
UR - http://www.scopus.com/inward/record.url?scp=85038358803&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85038358803&partnerID=8YFLogxK
U2 - 10.1038/s41588-017-0016-5
DO - 10.1038/s41588-017-0016-5
M3 - Article
C2 - 29255263
AN - SCOPUS:85038358803
SN - 1061-4036
VL - 50
SP - 106
EP - 119
JO - Nature genetics
JF - Nature genetics
IS - 1
ER -