A key mechanism of ethanol electrooxidation reaction in a noble-metal-free metal-organic framework

Takayoshi Ishimoto, Teppei Ogura, Michihisa Koyama, Lifen Yang, Shozo Kinoshita, Teppei Yamada, Makoto Tokunaga, Hiroshi Kitagawa

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

We elucidated theoretically an electrooxidation reaction mechanism of ethanol on a metal-organic framework (MOF) electrocatalyst, (HOC 2H4)2dtoaCu (H2dtoa = dithiooxamide), by using the density functional theory method. The indirect proton transfer from ethanol to the MOF via the HOC2H4 group is revealed to be a key mechanism controlling the reactivity of ethanol oxidation on MOF. We have also studied the ethanol oxidation reaction pathways on a series of R2dtoaCu (R = HOC3H6, C 2H5, C3H7, CH3, and H). Three dominant factors in the electrooxidation activity of R2dtoaCu were identified: (1) adsorptive interaction with the MOF; (2) strain in the backbone structure that enhances its activity as a proton acceptor; and (3) a proton-transfer pathway from ethanol to R2dtoaCu. These theoretical identifications are confirmed with the experimental results for ethanol sorption isotherms and the activity of the ethanol electrooxidation reaction measured for R2dtoaCu (R = HOC3H6 and C 2H5). We are the first to demonstrate the oxidation reaction mechanism of the MOF electrocatalyst for ethanol with theoretical study.

Original languageEnglish
Pages (from-to)10607-10614
Number of pages8
JournalJournal of Physical Chemistry C
Volume117
Issue number20
DOIs
Publication statusPublished - May 23 2013

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'A key mechanism of ethanol electrooxidation reaction in a noble-metal-free metal-organic framework'. Together they form a unique fingerprint.

Cite this