TY - JOUR
T1 - A generalized vortex ring model
AU - Kaplanski, Felix
AU - Sazhin, Sergei S.
AU - Fukumoto, Yasuhide
AU - Begg, Steven
AU - Heikal, Morgan
N1 - Funding Information:
The authors are grateful to the EPSRC (grant EP/E047912/1) (UK) and the Estonian Science Foundation (grant ETF 6832) for their financial support of this project.
PY - 2009
Y1 - 2009
N2 - A conventional laminar vortex ring model is generalized by assuming that the time dependence of the vortex ring thickness ℓ is given by the relation ℓ = a tb, where a is a positive number and 1/4 ≤ b ≤ 1/2. In the case in which a= √2ν, where ν is the laminar kinematic viscosity, and b = 1/2, the predictions of the generalized model are identical with the predictions of the conventional laminar model. In the case of b = 1/4 some of its predictions are similar to the turbulent vortex ring models, assuming that the time-dependent effective turbulent viscosity ν* is equal to ℓℓ′. This generalization is performed both in the case of a fixed vortex ring radius R0 and increasing vortex ring radius. In the latter case, the so-called second Saffman's formula is modified. In the case of fixed R0, the predicted vorticity distribution for short times shows a close agreement with a Gaussian form for all b and compares favourably with available experimental data. The time evolution of the location of the region of maximal vorticity and the region in which the velocity of the fluid in the frame of reference moving with the vortex ring centroid is equal to zero is analysed. It is noted that the locations of both regions depend upon b, the latter region being always further away from the vortex axis than the first one. It is shown that the axial velocities of the fluid in the first region are always greater than the axial velocities in the second region. Both velocities depend strongly upon b. Although the radial component of velocity in both of these regions is equal to zero, the location of both of these regions changes with time. This leads to the introduction of an effective radial velocity component; the latter case depends upon b. The predictions of the model are compared with the results of experimental measurements of vortex ring parameters reported in the literature.
AB - A conventional laminar vortex ring model is generalized by assuming that the time dependence of the vortex ring thickness ℓ is given by the relation ℓ = a tb, where a is a positive number and 1/4 ≤ b ≤ 1/2. In the case in which a= √2ν, where ν is the laminar kinematic viscosity, and b = 1/2, the predictions of the generalized model are identical with the predictions of the conventional laminar model. In the case of b = 1/4 some of its predictions are similar to the turbulent vortex ring models, assuming that the time-dependent effective turbulent viscosity ν* is equal to ℓℓ′. This generalization is performed both in the case of a fixed vortex ring radius R0 and increasing vortex ring radius. In the latter case, the so-called second Saffman's formula is modified. In the case of fixed R0, the predicted vorticity distribution for short times shows a close agreement with a Gaussian form for all b and compares favourably with available experimental data. The time evolution of the location of the region of maximal vorticity and the region in which the velocity of the fluid in the frame of reference moving with the vortex ring centroid is equal to zero is analysed. It is noted that the locations of both regions depend upon b, the latter region being always further away from the vortex axis than the first one. It is shown that the axial velocities of the fluid in the first region are always greater than the axial velocities in the second region. Both velocities depend strongly upon b. Although the radial component of velocity in both of these regions is equal to zero, the location of both of these regions changes with time. This leads to the introduction of an effective radial velocity component; the latter case depends upon b. The predictions of the model are compared with the results of experimental measurements of vortex ring parameters reported in the literature.
UR - http://www.scopus.com/inward/record.url?scp=65349100345&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=65349100345&partnerID=8YFLogxK
U2 - 10.1017/S0022112008005168
DO - 10.1017/S0022112008005168
M3 - Article
AN - SCOPUS:65349100345
SN - 0022-1120
VL - 622
SP - 233
EP - 258
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -