A Dual-Objective Bandit-Based Opportunistic Band Selection Strategy for Hybrid-Band V2X Metaverse Content Update

Sherief Hashima, Zubair Md Fadlullah, Mostafa M. Fouda, Kohei Hatano, Eiji Takimoto, Mohsen Guizani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

As vehicular communication networks embrace metaverse beyond 5G/6G systems, the rich content update via the least interfered subchannel of the optimal frequency band in a hybrid band vehicle to everything (V2X) setting emerges as a challenging optimization problem. We model this problem as a tradeoff between multi-band VR/AR devices attempting to perform metaverse scenes and environmental updates to metaverse roadside units (MRSUs) while minimizing energy consumption. Due to the computational hardness of this optimization, we formulate an opportunistic band selection problem using a multi-armed bandit (MAB) that provides a good quality solution in real-time without computationally burdening the already stretched augmented/virtual reality (AR/VR) units acting as transmitting nodes. The opportunistic use of scheduling rich content updates at traffic signals and stand-still scenarios maps well with the formulated bandit problem. We propose a Dual-Objective Minimax Optimal Stochastic Strategy (DOMOSS) as a natural solution to this problem. Through extensive computer-based simulations, we demonstrate the effectiveness of our proposal in contrast to baselines and comparable solutions. We also verify the quality of our solution and the convergence of the proposed strategy.

Original languageEnglish
Title of host publicationGLOBECOM 2023 - 2023 IEEE Global Communications Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6880-6885
Number of pages6
ISBN (Electronic)9798350310900
DOIs
Publication statusPublished - 2023
Event2023 IEEE Global Communications Conference, GLOBECOM 2023 - Kuala Lumpur, Malaysia
Duration: Dec 4 2023Dec 8 2023

Publication series

NameProceedings - IEEE Global Communications Conference, GLOBECOM
ISSN (Print)2334-0983
ISSN (Electronic)2576-6813

Conference

Conference2023 IEEE Global Communications Conference, GLOBECOM 2023
Country/TerritoryMalaysia
CityKuala Lumpur
Period12/4/2312/8/23

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing

Fingerprint

Dive into the research topics of 'A Dual-Objective Bandit-Based Opportunistic Band Selection Strategy for Hybrid-Band V2X Metaverse Content Update'. Together they form a unique fingerprint.

Cite this