A DFT+U study of strain-dependent ionic migration in Sm-Doped Ceria

Musa Alaydrus, Mamoru Sakaue, Susan M. Aspera, Triati D.K. Wungu, Nguyen H. Linh, Tran P.T. Linh, Hideaki Kasai, Tatsumi Ishihara, Takahiro Mohri

    Research output: Contribution to journalArticlepeer-review

    16 Citations (Scopus)


    Recent experiments on thin films and hetero-structures of ionically conducting oxides have indicated enhancement of oxygen ion conduction typically ascribed to strain-related effects. We performed density functional theory (DFT) calculations with Hubbard U correction to investigate the effects of biaxial lattice strain on the oxygen anion diffusivity in Sm-doped ceria (SDC). Here we found that the migration barriers are strongly affected by the applied strain. The changes in the migration barriers can almost be linearly correlated with cation-anion bond-lengths between the migrating oxygen and its nearest neighbor cations. In this work, we reported various possible dopant configurations for oxygen ion migrations at the vicinity of the oxygen vacancy. Our results indicate that the ionic migration barriers can be lowered by both compressive and tensile strains. The insight gained from this study may enable us to engineer and to improve oxygen ion migration in ceria-based solid electrolyte materials by compression or tension of the lattice parameters.

    Original languageEnglish
    Article number094707
    Journaljournal of the physical society of japan
    Issue number9
    Publication statusPublished - Sept 15 2014

    All Science Journal Classification (ASJC) codes

    • Physics and Astronomy(all)


    Dive into the research topics of 'A DFT+U study of strain-dependent ionic migration in Sm-Doped Ceria'. Together they form a unique fingerprint.

    Cite this