Abstract
In this paper, a new robust iterative learning control (ILC) algorithm has been proposed for linear systems in the presence of iteration-varying parametric uncertainties. The robust ILC design is formulated as a min-max problem using a quadratic performance criterion subject to constraints of the control input update. An upper bound of the maximization problem is derived, then, the solution of the min-max problem is achieved by solving a minimization problem. Applying Lagrangian duality to this minimization problem results in a dual problem which can be reformulated as a convex optimization problem over linear matrix inequalities (LMIs). Next, we present an LMI-based algorithm for the robust ILC design and prove the convergence of the control input and the error. Finally, the proposed algorithm is applied to a distillation column to demonstrate its effectiveness.
Original language | English |
---|---|
Pages (from-to) | 75-84 |
Number of pages | 10 |
Journal | Asian Journal of Control |
Volume | 13 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2011 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electrical and Electronic Engineering
- Control and Systems Engineering
- Mathematics (miscellaneous)