TY - JOUR
T1 - A comprehensive screening system for damaged nucleotide-binding proteins
AU - Tsuchimoto, Daisuke
AU - Iyama, Teruaki
AU - Nonaka, Mari
AU - Abolhassani, Nona
AU - Ohta, Eiko
AU - Sakumi, Kunihiko
AU - Nakabeppu, Yusaku
N1 - Funding Information:
These works were supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan [ 20013034 to YN, 21117512 to DT]; the Japan Society for the Promotion of Science [ 19390114 to DT, 08J03650 to TI] and Kyushu University Global COE program [YN].
PY - 2010/11/28
Y1 - 2010/11/28
N2 - To identify novel nucleotide pool sanitizing enzymes, we have established a comprehensive screening system for damaged nucleotide-binding proteins based on proteomics technology. In the screening system, affinity chromatography with resins carrying various damaged nucleotides is used for the purification of binding proteins, and the purified proteins are identified by mass-spectrometry. Inosine triphosphate (ITP) is a deleterious damaged nucleotide, and can be generated by nitrosative deamination of ATP or phosphorylation of inosine monophosphate (IMP). Using the above system, we performed screens for ITP-binding proteins from mouse and human cell extracts, and identified several ITP-binding enzymes. We identified both mouse inosine triphosphatase (ITPA) and human ITPA, well-known ITP hydrolyzing enzymes, as ITP-binding proteins. These results support the validity of this screening system. In addition to ITPA, we identified human nucleoside diphosphate linked moiety X-type motif 16 (NUDT16) protein as an ITP-binding protein. Biochemical analysis revealed that NUDT16 selectively hydrolyzes deoxyinosine diphosphate (dIDP) and IDP to deoxyinosine monophosphate (dIMP) and IMP, respectively. dITP and ITP are also hydrolyzed by NUDT16 to a lesser extent. The knockdown of NUDT16 in HeLa MR cells suppressed cell proliferation, and was accompanied by a significantly increased accumulation of strand breaks in nuclear DNA, suggesting that NUDT16 has an essential role in the maintenance of genome stability. RS21-C6, another ITP-binding protein identified in our screen, binds not only to ITP, but also to ATP. RS21-C6 hydrolyzes dCTP and 5-halo-dCTP, but does not hydrolyze ITP or ATP. It is likely that RS21-C6 may control dCTP levels or eliminate 5-halo-dCTP in the nucleotide pools. In conclusion, the results of these studies show that our screening system is applicable in studying the health effects of damaged nucleotides and cellular sanitizing systems for nucleotide pools.
AB - To identify novel nucleotide pool sanitizing enzymes, we have established a comprehensive screening system for damaged nucleotide-binding proteins based on proteomics technology. In the screening system, affinity chromatography with resins carrying various damaged nucleotides is used for the purification of binding proteins, and the purified proteins are identified by mass-spectrometry. Inosine triphosphate (ITP) is a deleterious damaged nucleotide, and can be generated by nitrosative deamination of ATP or phosphorylation of inosine monophosphate (IMP). Using the above system, we performed screens for ITP-binding proteins from mouse and human cell extracts, and identified several ITP-binding enzymes. We identified both mouse inosine triphosphatase (ITPA) and human ITPA, well-known ITP hydrolyzing enzymes, as ITP-binding proteins. These results support the validity of this screening system. In addition to ITPA, we identified human nucleoside diphosphate linked moiety X-type motif 16 (NUDT16) protein as an ITP-binding protein. Biochemical analysis revealed that NUDT16 selectively hydrolyzes deoxyinosine diphosphate (dIDP) and IDP to deoxyinosine monophosphate (dIMP) and IMP, respectively. dITP and ITP are also hydrolyzed by NUDT16 to a lesser extent. The knockdown of NUDT16 in HeLa MR cells suppressed cell proliferation, and was accompanied by a significantly increased accumulation of strand breaks in nuclear DNA, suggesting that NUDT16 has an essential role in the maintenance of genome stability. RS21-C6, another ITP-binding protein identified in our screen, binds not only to ITP, but also to ATP. RS21-C6 hydrolyzes dCTP and 5-halo-dCTP, but does not hydrolyze ITP or ATP. It is likely that RS21-C6 may control dCTP levels or eliminate 5-halo-dCTP in the nucleotide pools. In conclusion, the results of these studies show that our screening system is applicable in studying the health effects of damaged nucleotides and cellular sanitizing systems for nucleotide pools.
UR - http://www.scopus.com/inward/record.url?scp=78549286641&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78549286641&partnerID=8YFLogxK
U2 - 10.1016/j.mrgentox.2010.06.005
DO - 10.1016/j.mrgentox.2010.06.005
M3 - Review article
C2 - 20542141
AN - SCOPUS:78549286641
SN - 1383-5718
VL - 703
SP - 37
EP - 42
JO - Mutation Research - Genetic Toxicology and Environmental Mutagenesis
JF - Mutation Research - Genetic Toxicology and Environmental Mutagenesis
IS - 1
ER -