TY - JOUR
T1 - A case of ezetimibe-effective hypercholesterolemia with a novel heterozygous variant in abcg5
AU - Nakano, Yujiro
AU - Komiya, Chikara
AU - Shimizu, Hitomi
AU - Mishima, Hiroyuki
AU - Shiba, Kumiko
AU - Tsujimoto, Kazutaka
AU - Ikeda, Kenji
AU - Kashimada, Kenichi
AU - Dateki, Sumito
AU - Yoshiura, Koh Ichiro
AU - Ogawa, Yoshihiro
AU - Yamada, Tetsuya
N1 - Publisher Copyright:
© The Japan Endocrine Society.
PY - 2020
Y1 - 2020
N2 - Sitosterolemia is caused by homozygous or compound heterozygous gene mutations in either ATP-binding cassette subfamily G member 5 (ABCG5) or 8 (ABCG8). Since ABCG5 and ABCG8 play pivotal roles in the excretion of neutral sterols into feces and bile, patients with sitosterolemia present elevated levels of serum plant sterols and in some cases also hypercholesterolemia. A 48-year-old woman was referred to our hospital for hypercholesterolemia. She had been misdiagnosed with familial hypercholesterolemia at the age of 20 and her serum low-density lipoprotein cholesterol (LDL-C) levels had remained about 200–300 mg/dL at the former clinic. Although the treatment of hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors was ineffective, her serum LDL-C levels were normalized by ezetimibe, a cholesterol transporter inhibitor. We noticed that her serum sitosterol and campesterol levels were relatively high. Targeted analysis sequencing identified a novel heterozygous ABCG5 variant (c.203A>T; p.Ile68Asn) in the patient, whereas no mutations were found in low-density lipoprotein receptor (LDLR), proprotein convertase subtilisin/kexin type 9 (PCSK9), or Niemann-Pick C1-like intracellular cholesterol transporter 1 (NPC1L1). While sitosterolemia is a rare disease, a recent study has reported that the incidence of loss-of-function mutation in the ABCG5 or ABCG8 gene is higher than we thought at 1 in 220 individuals. The present case suggests that serum plant sterol levels should be examined and ezetimibe treatment should be considered in patients with hypercholesterolemia who are resistant to HMG-CoA reductase inhibitors.
AB - Sitosterolemia is caused by homozygous or compound heterozygous gene mutations in either ATP-binding cassette subfamily G member 5 (ABCG5) or 8 (ABCG8). Since ABCG5 and ABCG8 play pivotal roles in the excretion of neutral sterols into feces and bile, patients with sitosterolemia present elevated levels of serum plant sterols and in some cases also hypercholesterolemia. A 48-year-old woman was referred to our hospital for hypercholesterolemia. She had been misdiagnosed with familial hypercholesterolemia at the age of 20 and her serum low-density lipoprotein cholesterol (LDL-C) levels had remained about 200–300 mg/dL at the former clinic. Although the treatment of hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors was ineffective, her serum LDL-C levels were normalized by ezetimibe, a cholesterol transporter inhibitor. We noticed that her serum sitosterol and campesterol levels were relatively high. Targeted analysis sequencing identified a novel heterozygous ABCG5 variant (c.203A>T; p.Ile68Asn) in the patient, whereas no mutations were found in low-density lipoprotein receptor (LDLR), proprotein convertase subtilisin/kexin type 9 (PCSK9), or Niemann-Pick C1-like intracellular cholesterol transporter 1 (NPC1L1). While sitosterolemia is a rare disease, a recent study has reported that the incidence of loss-of-function mutation in the ABCG5 or ABCG8 gene is higher than we thought at 1 in 220 individuals. The present case suggests that serum plant sterol levels should be examined and ezetimibe treatment should be considered in patients with hypercholesterolemia who are resistant to HMG-CoA reductase inhibitors.
UR - http://www.scopus.com/inward/record.url?scp=85097003828&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097003828&partnerID=8YFLogxK
U2 - 10.1507/endocrj.EJ20-0044
DO - 10.1507/endocrj.EJ20-0044
M3 - Article
C2 - 32641618
AN - SCOPUS:85097003828
SN - 0918-8959
VL - 67
SP - 1099
EP - 1105
JO - Endocrine Journal
JF - Endocrine Journal
IS - 11
ER -