325 nm-laser-excited micro-photoluminescence for strained Si films

Dong Wang, Haigui Yang, Tokuhide Kitamura, Hiroshi Nakashima

Research output: Contribution to journalArticlepeer-review

Abstract

Low-temperature micro-photoluminescence (PL) was performed for strained Si (sSi) films by 325 nm-laser excitation at 8.5 K. All of the sSi films were thicker than the penetration depth (dp) of the 325-nm line for Si. The dependence of the PL spectra on the strain condition was studied by comparing dp to the thickness of the strained part (ts), which varied in the sSi film plane. Under the condition ts > dp, the strained-part-related PL (PL-S) was observed, but not the unstrained-part-related PL (PL-US). Under the condition ts < dp, PL-US appeared and its intensity negatively depended on ts, while the intensity of PL-S positively depended on ts. Under the condition of a very small ts, PL-S was never observed. These phenomena were explained by exciton behaviors in sSi film with a band-gap distribution, and enable a deeper understanding of PL characteristics in a relatively large-scale sample with a depth distribution of strain.

Original languageEnglish
Pages (from-to)2470-2473
Number of pages4
JournalThin Solid Films
Volume518
Issue number9
DOIs
Publication statusPublished - Feb 26 2010

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of '325 nm-laser-excited micro-photoluminescence for strained Si films'. Together they form a unique fingerprint.

Cite this