[2.2]Paracyclophane-based hole-transporting materials for perovskite solar cells

Yin Sheng Lin, Hsin Li, Wen Sheng Yu, Szu Tan Wang, Yi Min Chang, Tsung Hsin Liu, Shao Sian Li, Motonori Watanabe, Hsiao Han Chiu, Di Yan Wang, Yuan Jay Chang

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


To develope an alternative efficient hole-transporting materials (HTMs) to 2,2′,7,7′,-tertrakis(N,N-p-dimethoxyphenylamino)-9,9′-spirobifuorene (spiro-OMeTAD) for high performance perovskite solar cells (PSCs), we demonstrate a series of donor-π-donor HTMs (WS-1, WS-2, and WS-4 HTMs) with [2.2]paracyclophane ([2.2]PCP) as the core structure and triphenylamine as four arms at pseudo-para and pseudo-ortho orientations. Compared with the well-known HTM of spiro-OMeTAD, WS-HTMs has a simpler synthetic route and short synthesis steps (3–4 steps). Due to the improved hole mobility and good charge transfer efficiency of pseudo-para-[2.2]PCP HTMs (WS-1 and WS-2), the out-of-plane carrier transport is enhanced and the PSC base on WS-1/WS-2 HTMs achieve higher Jsc and ff values than the device based on pseudo-ortho-[2.2]PCP HTM (WS-4). A SnO2 electron transport layer (ETL) with WS-1 HTM shows the best power conversion efficiency of 19.13% in a PSC, which is higher than that of spiro-OMeTAD (17.71%) under the same conditions. The WS-HTMs also provided better stability and moisture resistance in PSCs, which prolongs the lifetime in the ambient environment than in case of spiro-OMeTAD.

Original languageEnglish
Article number229543
JournalJournal of Power Sources
Publication statusPublished - Apr 15 2021

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering


Dive into the research topics of '[2.2]Paracyclophane-based hole-transporting materials for perovskite solar cells'. Together they form a unique fingerprint.

Cite this